Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik2 Structured version   Visualization version   GIF version

Theorem ntrneik2 37911
Description: An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik2
StepHypRef Expression
1 ntrnei.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . . . . . . . . 14 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . . . . . . . . 14 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 37895 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
5 elmapi 7839 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
76ffvelrnda 6325 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
87elpwid 4148 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
98sselda 3588 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → 𝑥𝐵)
10 biimt 350 . . . . . . . . 9 (𝑥𝐵 → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
119, 10syl 17 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
1211pm5.74da 722 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠))))
13 bi2.04 376 . . . . . . 7 ((𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠)) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1412, 13syl6bb 276 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
1514albidv 1846 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
16 dfss2 3577 . . . . 5 ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))
17 df-ral 2913 . . . . 5 (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1815, 16, 173bitr4g 303 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
193ad2antrr 761 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
20 simpr 477 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
21 simplr 791 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
221, 2, 19, 20, 21ntrneiel 37900 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2322imbi1d 331 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2423ralbidva 2981 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2518, 24bitrd 268 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2625ralbidva 2981 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
27 ralcom 3092 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠))
2826, 27syl6bb 276 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wcel 1987  wral 2908  {crab 2912  Vcvv 3190  wss 3560  𝒫 cpw 4136   class class class wbr 4623  cmpt 4683  wf 5853  cfv 5857  (class class class)co 6615  cmpt2 6617  𝑚 cmap 7817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-map 7819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator