Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneineine1lem Structured version   Visualization version   GIF version

Theorem ntrneineine1lem 40312
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that for every point, at not all subsets are (pseudo-)neighborboods hold equally. (Contributed by RP, 1-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
ntrnei.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrneineine1lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ 𝒫 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠   𝑘,𝐼,𝑙,𝑚   𝑁,𝑠   𝑋,𝑙,𝑚,𝑠   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrneineine1lem
StepHypRef Expression
1 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . 6 (𝜑𝐼𝐹𝑁)
43adantr 481 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
5 ntrnei.x . . . . . 6 (𝜑𝑋𝐵)
65adantr 481 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
7 simpr 485 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
81, 2, 4, 6, 7ntrneiel 40309 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑋)))
98notbid 319 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (¬ 𝑋 ∈ (𝐼𝑠) ↔ ¬ 𝑠 ∈ (𝑁𝑋)))
109rexbidva 3293 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁𝑋)))
111, 2, 3ntrneinex 40305 . . . . . . 7 (𝜑𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵))
12 elmapi 8417 . . . . . . 7 (𝑁 ∈ (𝒫 𝒫 𝐵m 𝐵) → 𝑁:𝐵⟶𝒫 𝒫 𝐵)
1311, 12syl 17 . . . . . 6 (𝜑𝑁:𝐵⟶𝒫 𝒫 𝐵)
1413, 5ffvelrnd 6844 . . . . 5 (𝜑 → (𝑁𝑋) ∈ 𝒫 𝒫 𝐵)
1514elpwid 4549 . . . 4 (𝜑 → (𝑁𝑋) ⊆ 𝒫 𝐵)
16 biortn 931 . . . 4 ((𝑁𝑋) ⊆ 𝒫 𝐵 → (¬ 𝒫 𝐵 ⊆ (𝑁𝑋) ↔ (¬ (𝑁𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁𝑋))))
1715, 16syl 17 . . 3 (𝜑 → (¬ 𝒫 𝐵 ⊆ (𝑁𝑋) ↔ (¬ (𝑁𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁𝑋))))
18 df-rex 3141 . . . 4 (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁𝑋)))
19 nss 4026 . . . 4 (¬ 𝒫 𝐵 ⊆ (𝑁𝑋) ↔ ∃𝑠(𝑠 ∈ 𝒫 𝐵 ∧ ¬ 𝑠 ∈ (𝑁𝑋)))
2018, 19bitr4i 279 . . 3 (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁𝑋) ↔ ¬ 𝒫 𝐵 ⊆ (𝑁𝑋))
21 df-ne 3014 . . . 4 ((𝑁𝑋) ≠ 𝒫 𝐵 ↔ ¬ (𝑁𝑋) = 𝒫 𝐵)
22 ianor 975 . . . . 5 (¬ ((𝑁𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁𝑋)) ↔ (¬ (𝑁𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁𝑋)))
23 eqss 3979 . . . . 5 ((𝑁𝑋) = 𝒫 𝐵 ↔ ((𝑁𝑋) ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ (𝑁𝑋)))
2422, 23xchnxbir 334 . . . 4 (¬ (𝑁𝑋) = 𝒫 𝐵 ↔ (¬ (𝑁𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁𝑋)))
2521, 24bitri 276 . . 3 ((𝑁𝑋) ≠ 𝒫 𝐵 ↔ (¬ (𝑁𝑋) ⊆ 𝒫 𝐵 ∨ ¬ 𝒫 𝐵 ⊆ (𝑁𝑋)))
2617, 20, 253bitr4g 315 . 2 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑠 ∈ (𝑁𝑋) ↔ (𝑁𝑋) ≠ 𝒫 𝐵))
2710, 26bitrd 280 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐼𝑠) ↔ (𝑁𝑋) ≠ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  {crab 3139  Vcvv 3492  wss 3933  𝒫 cpw 4535   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7145  cmpo 7147  m cmap 8395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-map 8397
This theorem is referenced by:  ntrneineine1  40316
  Copyright terms: Public domain W3C validator