Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneix13 Structured version   Visualization version   GIF version

Theorem ntrneix13 37914
Description: The closure of the union of any pair is equal to the union of closures if and only if the union of any pair belonging to the convergents of a point if equivalent to at least one of the pain belonging to the convergents of that point. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneix13 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑡,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑡,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑡,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneix13
StepHypRef Expression
1 dfss3 3577 . . . . . . . . 9 ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))
2 ntrnei.o . . . . . . . . . . . . . . 15 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
3 ntrnei.f . . . . . . . . . . . . . . 15 𝐹 = (𝒫 𝐵𝑂𝐵)
4 ntrnei.r . . . . . . . . . . . . . . 15 (𝜑𝐼𝐹𝑁)
52, 3, 4ntrneiiex 37891 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
65ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
7 elmapi 7831 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
86, 7syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
92, 3, 4ntrneibex 37888 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ V)
109ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝐵 ∈ V)
11 simplr 791 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
1211elpwid 4146 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑠𝐵)
13 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡 ∈ 𝒫 𝐵)
1413elpwid 4146 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝑡𝐵)
1512, 14unssd 3772 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ⊆ 𝐵)
1610, 15sselpwd 4772 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
178, 16ffvelrnd 6321 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ∈ 𝒫 𝐵)
1817elpwid 4146 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼‘(𝑠𝑡)) ⊆ 𝐵)
19 ralss 3652 . . . . . . . . . 10 ((𝐼‘(𝑠𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
2018, 19syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ (𝐼‘(𝑠𝑡))𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
211, 20syl5bb 272 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
22 dfss3 3577 . . . . . . . . 9 (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)))
238, 11ffvelrnd 6321 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
2423elpwid 4146 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
258, 13ffvelrnd 6321 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ∈ 𝒫 𝐵)
2625elpwid 4146 . . . . . . . . . . 11 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐼𝑡) ⊆ 𝐵)
2724, 26unssd 3772 . . . . . . . . . 10 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵)
28 ralss 3652 . . . . . . . . . 10 (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ 𝐵 → (∀𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
2927, 28syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3022, 29syl5bb 272 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3121, 30anbi12d 746 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ∧ ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ∧ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡))))))
32 eqss 3602 . . . . . . 7 ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ((𝐼‘(𝑠𝑡)) ⊆ ((𝐼𝑠) ∪ (𝐼𝑡)) ∧ ((𝐼𝑠) ∪ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡))))
33 ralbiim 3063 . . . . . . 7 (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) → 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ∧ ∀𝑥𝐵 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) → 𝑥 ∈ (𝐼‘(𝑠𝑡)))))
3431, 32, 333bitr4g 303 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)))))
354ad3antrrr 765 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
36 simpr 477 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
379ad3antrrr 765 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ V)
38 simpllr 798 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
3938elpwid 4146 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠𝐵)
40 simplr 791 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡 ∈ 𝒫 𝐵)
4140elpwid 4146 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑡𝐵)
4239, 41unssd 3772 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ⊆ 𝐵)
4337, 42sselpwd 4772 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑠𝑡) ∈ 𝒫 𝐵)
442, 3, 35, 36, 43ntrneiel 37896 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ (𝑠𝑡) ∈ (𝑁𝑥)))
45 elun 3736 . . . . . . . . 9 (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)))
462, 3, 35, 36, 38ntrneiel 37896 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
472, 3, 35, 36, 40ntrneiel 37896 . . . . . . . . . 10 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑡) ↔ 𝑡 ∈ (𝑁𝑥)))
4846, 47orbi12d 745 . . . . . . . . 9 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) ∨ 𝑥 ∈ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
4945, 48syl5bb 272 . . . . . . . 8 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
5044, 49bibi12d 335 . . . . . . 7 ((((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5150ralbidva 2980 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼‘(𝑠𝑡)) ↔ 𝑥 ∈ ((𝐼𝑠) ∪ (𝐼𝑡))) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5234, 51bitrd 268 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑡 ∈ 𝒫 𝐵) → ((𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5352ralbidva 2980 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
54 ralcom 3091 . . . 4 (∀𝑡 ∈ 𝒫 𝐵𝑥𝐵 ((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
5553, 54syl6bb 276 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
5655ralbidva 2980 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
57 ralcom 3091 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥))))
5856, 57syl6bb 276 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐼‘(𝑠𝑡)) = ((𝐼𝑠) ∪ (𝐼𝑡)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝑠𝑡) ∈ (𝑁𝑥) ↔ (𝑠 ∈ (𝑁𝑥) ∨ 𝑡 ∈ (𝑁𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3189  cun 3557  wss 3559  𝒫 cpw 4135   class class class wbr 4618  cmpt 4678  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  𝑚 cmap 7809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-map 7811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator