![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nulssgt | Structured version Visualization version GIF version |
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
nulssgt | ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3243 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ∈ V) | |
2 | 0ex 4823 | . . 3 ⊢ ∅ ∈ V | |
3 | 1, 2 | jctir 560 | . 2 ⊢ (𝐴 ∈ 𝒫 No → (𝐴 ∈ V ∧ ∅ ∈ V)) |
4 | elpwi 4201 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) | |
5 | 0ss 4005 | . . . 4 ⊢ ∅ ⊆ No | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
7 | ral0 4109 | . . . . 5 ⊢ ∀𝑦 ∈ ∅ 𝑥 <s 𝑦 | |
8 | 7 | rgenw 2953 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥 <s 𝑦 |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝒫 No → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥 <s 𝑦) |
10 | 4, 6, 9 | 3jca 1261 | . 2 ⊢ (𝐴 ∈ 𝒫 No → (𝐴 ⊆ No ∧ ∅ ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥 <s 𝑦)) |
11 | brsslt 32025 | . 2 ⊢ (𝐴 <<s ∅ ↔ ((𝐴 ∈ V ∧ ∅ ∈ V) ∧ (𝐴 ⊆ No ∧ ∅ ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ∅ 𝑥 <s 𝑦))) | |
12 | 3, 10, 11 | sylanbrc 699 | 1 ⊢ (𝐴 ∈ 𝒫 No → 𝐴 <<s ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 class class class wbr 4685 No csur 31918 <s cslt 31919 <<s csslt 32021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-sslt 32022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |