MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1 Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1 27558
Description: In a friendship graph, for each walk of length 𝑛 starting at a fixed vertex 𝑣 and ending not at this vertex, there is a unique vertex so that the walk extended by an edge to this vertex and an edge from this vertex to the first vertex of the walk is a value of operation 𝐻. If the walk is represented as a word, it is sufficient to add one vertex to the word to obtain the closed walk contained in the value of operation 𝐻, since in a word representing a closed walk the starting vertex is not repeated at the end. This theorem generally holds only for friendship graphs, because these guarantee that for the first and last vertex there is a (unique) third vertex "in between". (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 30-May-2021.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlk2lem1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑣,𝑊,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑊(𝑛)

Proof of Theorem numclwwlk2lem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 numclwwlk.q . . . . . 6 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
31, 2numclwwlkovq 27556 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
433adant1 1125 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
54eleq2d 2825 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
6 fveq1 6352 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
76eqeq1d 2762 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
8 fveq2 6353 . . . . . 6 (𝑤 = 𝑊 → (lastS‘𝑤) = (lastS‘𝑊))
98neeq1d 2991 . . . . 5 (𝑤 = 𝑊 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ 𝑋))
107, 9anbi12d 749 . . . 4 (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)))
1110elrab 3504 . . 3 (𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)))
125, 11syl6bb 276 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))))
13 simpl1 1228 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → 𝐺 ∈ FriendGraph )
14 eqid 2760 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
151, 14wwlknp 26967 . . . . . . . . . . . 12 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
16 peano2nn 11244 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1716adantl 473 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
18 simpl 474 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))
1917, 18jca 555 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1))))
2019ex 449 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
21203adant3 1127 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
2215, 21syl 17 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
23 lswlgt0cl 13563 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1))) → (lastS‘𝑊) ∈ 𝑉)
2422, 23syl6 35 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (lastS‘𝑊) ∈ 𝑉))
2524adantr 472 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑁 ∈ ℕ → (lastS‘𝑊) ∈ 𝑉))
2625com12 32 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ∈ 𝑉))
27263ad2ant3 1130 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ∈ 𝑉))
2827imp 444 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (lastS‘𝑊) ∈ 𝑉)
29 eleq1 2827 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ 𝑉𝑋𝑉))
3029biimprd 238 . . . . . . . . . 10 ((𝑊‘0) = 𝑋 → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3130ad2antrl 766 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3231com12 32 . . . . . . . 8 (𝑋𝑉 → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
33323ad2ant2 1129 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
3433imp 444 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (𝑊‘0) ∈ 𝑉)
35 neeq2 2995 . . . . . . . . . 10 (𝑋 = (𝑊‘0) → ((lastS‘𝑊) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ (𝑊‘0)))
3635eqcoms 2768 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → ((lastS‘𝑊) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ (𝑊‘0)))
3736biimpa 502 . . . . . . . 8 (((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋) → (lastS‘𝑊) ≠ (𝑊‘0))
3837adantl 473 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ≠ (𝑊‘0))
3938adantl 473 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (lastS‘𝑊) ≠ (𝑊‘0))
4028, 34, 393jca 1123 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ((lastS‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
411, 14frcond2 27442 . . . . 5 (𝐺 ∈ FriendGraph → (((lastS‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → ∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))))
4213, 40, 41sylc 65 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
43 simpl 474 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4443ad2antlr 765 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
45 simpr 479 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣𝑉)
46 nnnn0 11511 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47463ad2ant3 1130 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4847ad2antrr 764 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑁 ∈ ℕ0)
4944, 45, 483jca 1123 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0))
501, 14wwlksext2clwwlk 27208 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
51503adant3 1127 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
5251imp 444 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) ∧ ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
5349, 52sylan 489 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
541wwlknbp 26966 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
5554simp3d 1139 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ Word 𝑉)
5655ad2antrl 766 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → 𝑊 ∈ Word 𝑉)
5756ad2antrr 764 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑊 ∈ Word 𝑉)
5845adantr 472 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑣𝑉)
59 2z 11621 . . . . . . . . . . 11 2 ∈ ℤ
60 nn0pzuz 11958 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
6146, 59, 60sylancl 697 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
62613ad2ant3 1130 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑁 + 2) ∈ (ℤ‘2))
6362ad3antrrr 768 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑁 + 2) ∈ (ℤ‘2))
64 simpr 479 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
651, 14clwwlkext2edg 27207 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑣𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6657, 58, 63, 64, 65syl31anc 1480 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6753, 66impbida 913 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
6845, 1syl6eleq 2849 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣 ∈ (Vtx‘𝐺))
6937anim2i 594 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
7069ad2antlr 765 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
7170simprd 482 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (lastS‘𝑊) ≠ (𝑊‘0))
72 numclwwlk2lem1lem 27519 . . . . . . . . . 10 ((𝑣 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
7368, 44, 71, 72syl3anc 1477 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
74 eqeq2 2771 . . . . . . . . . . . . 13 (𝑋 = (𝑊‘0) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7574eqcoms 2768 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7675ad2antrl 766 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7776ad2antlr 765 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7873simpld 477 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0))
7978neeq2d 2992 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
8077, 79anbi12d 749 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0))))
8173, 80mpbird 247 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
82 nncn 11240 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
83 2cnd 11305 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 2 ∈ ℂ)
8482, 83pncand 10605 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
85843ad2ant3 1130 . . . . . . . . . . . 12 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 2) − 2) = 𝑁)
8685ad2antrr 764 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑁 + 2) − 2) = 𝑁)
8786fveq2d 6357 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁))
8887neeq1d 2991 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
8988anbi2d 742 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
9081, 89mpbird 247 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9190biantrud 529 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))))
9261anim2i 594 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
93923adant1 1125 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
9493ad2antrr 764 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
95 numclwwlk.h . . . . . . . . . 10 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
9695numclwwlkovh 27555 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
9794, 96syl 17 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
9897eleq2d 2825 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
99 fveq1 6352 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘0) = ((𝑊 ++ ⟨“𝑣”⟩)‘0))
10099eqeq1d 2762 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋))
101 fveq1 6352 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)))
102101, 99neeq12d 2993 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
103100, 102anbi12d 749 . . . . . . . 8 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
104103elrab 3504 . . . . . . 7 ((𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
10598, 104syl6rbb 277 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
10667, 91, 1053bitrd 294 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
107106reubidva 3264 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
10842, 107mpbid 222 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
109108ex 449 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11012, 109sylbid 230 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  ∃!wreu 3052  {crab 3054  Vcvv 3340  {cpr 4323  cfv 6049  (class class class)co 6814  cmpt2 6816  0cc0 10148  1c1 10149   + caddc 10151  cmin 10478  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  ..^cfzo 12679  chash 13331  Word cword 13497  lastSclsw 13498   ++ cconcat 13499  ⟨“cs1 13500  Vtxcvtx 26094  Edgcedg 26159   WWalksN cwwlksn 26950   ClWWalksN cclwwlkn 27168  ClWWalksNOncclwwlknon 27253   FriendGraph cfrgr 27431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-lsw 13506  df-concat 13507  df-s1 13508  df-wwlks 26954  df-wwlksn 26955  df-clwwlk 27126  df-clwwlkn 27170  df-clwwlknon 27254  df-frgr 27432
This theorem is referenced by:  numclwlk2lem2f1o  27561
  Copyright terms: Public domain W3C validator