Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1OLD Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1OLD 27542
 Description: Obsolete version of numclwwlk2lem1 27535 as of 1-May-2022. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 30-May-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
numclwwlkOLD.v 𝑉 = (Vtx‘𝐺)
numclwwlkOLD.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlkOLD.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
Assertion
Ref Expression
numclwwlk2lem1OLD ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑣,𝑊,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)   𝑊(𝑛)

Proof of Theorem numclwwlk2lem1OLD
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 numclwwlkOLD.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 numclwwlkOLD.q . . . . . 6 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
31, 2numclwwlkovq 27533 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
433adant1 1125 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
54eleq2d 2823 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ 𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
6 fveq1 6349 . . . . . 6 (𝑤 = 𝑊 → (𝑤‘0) = (𝑊‘0))
76eqeq1d 2760 . . . . 5 (𝑤 = 𝑊 → ((𝑤‘0) = 𝑋 ↔ (𝑊‘0) = 𝑋))
8 fveq2 6350 . . . . . 6 (𝑤 = 𝑊 → (lastS‘𝑤) = (lastS‘𝑊))
98neeq1d 2989 . . . . 5 (𝑤 = 𝑊 → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ 𝑋))
107, 9anbi12d 749 . . . 4 (𝑤 = 𝑊 → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)))
1110elrab 3502 . . 3 (𝑊 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)))
125, 11syl6bb 276 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))))
13 simpl1 1228 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → 𝐺 ∈ FriendGraph )
14 eqid 2758 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
151, 14wwlknp 26944 . . . . . . . . . . . 12 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
16 peano2nn 11222 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
1716adantl 473 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℕ)
18 simpl 474 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))
1917, 18jca 555 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1))))
2019ex 449 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
21203adant3 1127 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
2215, 21syl 17 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1)))))
23 lswlgt0cl 13541 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (𝑁 + 1))) → (lastS‘𝑊) ∈ 𝑉)
2422, 23syl6 35 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (lastS‘𝑊) ∈ 𝑉))
2524adantr 472 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑁 ∈ ℕ → (lastS‘𝑊) ∈ 𝑉))
2625com12 32 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ∈ 𝑉))
27263ad2ant3 1130 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ∈ 𝑉))
2827imp 444 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (lastS‘𝑊) ∈ 𝑉)
29 eleq1 2825 . . . . . . . . . . 11 ((𝑊‘0) = 𝑋 → ((𝑊‘0) ∈ 𝑉𝑋𝑉))
3029biimprd 238 . . . . . . . . . 10 ((𝑊‘0) = 𝑋 → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3130ad2antrl 766 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑋𝑉 → (𝑊‘0) ∈ 𝑉))
3231com12 32 . . . . . . . 8 (𝑋𝑉 → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
33323ad2ant2 1129 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊‘0) ∈ 𝑉))
3433imp 444 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (𝑊‘0) ∈ 𝑉)
35 neeq2 2993 . . . . . . . . . 10 (𝑋 = (𝑊‘0) → ((lastS‘𝑊) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ (𝑊‘0)))
3635eqcoms 2766 . . . . . . . . 9 ((𝑊‘0) = 𝑋 → ((lastS‘𝑊) ≠ 𝑋 ↔ (lastS‘𝑊) ≠ (𝑊‘0)))
3736biimpa 502 . . . . . . . 8 (((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋) → (lastS‘𝑊) ≠ (𝑊‘0))
3837adantl 473 . . . . . . 7 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (lastS‘𝑊) ≠ (𝑊‘0))
3938adantl 473 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (lastS‘𝑊) ≠ (𝑊‘0))
4028, 34, 393jca 1123 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ((lastS‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
411, 14frcond2 27419 . . . . 5 (𝐺 ∈ FriendGraph → (((lastS‘𝑊) ∈ 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → ∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))))
4213, 40, 41sylc 65 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
43 simpl 474 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
4443ad2antlr 765 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑊 ∈ (𝑁 WWalksN 𝐺))
45 simpr 479 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣𝑉)
46 nnnn0 11489 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
47463ad2ant3 1130 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
4847ad2antrr 764 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑁 ∈ ℕ0)
4944, 45, 483jca 1123 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0))
501, 14wwlksext2clwwlk 27185 . . . . . . . . . 10 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
51503adant3 1127 . . . . . . . . 9 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
5251imp 444 . . . . . . . 8 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑣𝑉𝑁 ∈ ℕ0) ∧ ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
5349, 52sylan 489 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
541wwlknbp 26943 . . . . . . . . . . 11 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0𝑊 ∈ Word 𝑉))
5554simp3d 1139 . . . . . . . . . 10 (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ Word 𝑉)
5655ad2antrl 766 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → 𝑊 ∈ Word 𝑉)
5756ad2antrr 764 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑊 ∈ Word 𝑉)
5845adantr 472 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → 𝑣𝑉)
59 2z 11599 . . . . . . . . . . 11 2 ∈ ℤ
60 nn0pzuz 11936 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
6146, 59, 60sylancl 697 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
62613ad2ant3 1130 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑁 + 2) ∈ (ℤ‘2))
6362ad3antrrr 768 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑁 + 2) ∈ (ℤ‘2))
64 simpr 479 . . . . . . . 8 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺))
651, 14clwwlkext2edg 27184 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑣𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6657, 58, 63, 64, 65syl31anc 1480 . . . . . . 7 (((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) ∧ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)))
6753, 66impbida 913 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺)))
6845, 1syl6eleq 2847 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → 𝑣 ∈ (Vtx‘𝐺))
6937anim2i 594 . . . . . . . . . . . 12 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
7069ad2antlr 765 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)))
7170simprd 482 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (lastS‘𝑊) ≠ (𝑊‘0))
72 numclwwlk2lem1lem 27496 . . . . . . . . . 10 ((𝑣 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
7368, 44, 71, 72syl3anc 1477 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
74 eqeq2 2769 . . . . . . . . . . . . 13 (𝑋 = (𝑊‘0) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7574eqcoms 2766 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7675ad2antrl 766 . . . . . . . . . . 11 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7776ad2antlr 765 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0)))
7873simpld 477 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0))
7978neeq2d 2990 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0)))
8077, 79anbi12d 749 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ (𝑊‘0))))
8173, 80mpbird 247 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
82 nncn 11218 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
83 2cnd 11283 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 2 ∈ ℂ)
8482, 83pncand 10583 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
85843ad2ant3 1130 . . . . . . . . . . . 12 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 2) − 2) = 𝑁)
8685ad2antrr 764 . . . . . . . . . . 11 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑁 + 2) − 2) = 𝑁)
8786fveq2d 6354 . . . . . . . . . 10 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁))
8887neeq1d 2989 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
8988anbi2d 742 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘𝑁) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
9081, 89mpbird 247 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
9190biantrud 529 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))))
92 2nn 11375 . . . . . . . . . . . . 13 2 ∈ ℕ
93 nnaddcl 11232 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 2 ∈ ℕ) → (𝑁 + 2) ∈ ℕ)
9492, 93mpan2 709 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
9594anim2i 594 . . . . . . . . . . 11 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
96953adant1 1125 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
9796ad2antrr 764 . . . . . . . . 9 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
98 numclwwlkOLD.h . . . . . . . . . 10 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
991, 2, 98numclwwlkovhOLD 27541 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
10097, 99syl 17 . . . . . . . 8 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
101100eleq2d 2823 . . . . . . 7 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
102 fveq1 6349 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘0) = ((𝑊 ++ ⟨“𝑣”⟩)‘0))
103102eqeq1d 2760 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋))
104 fveq1 6349 . . . . . . . . . 10 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑤‘((𝑁 + 2) − 2)) = ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)))
105104, 102neeq12d 2991 . . . . . . . . 9 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0)))
106103, 105anbi12d 749 . . . . . . . 8 (𝑤 = (𝑊 ++ ⟨“𝑣”⟩) → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
107106elrab 3502 . . . . . . 7 ((𝑊 ++ ⟨“𝑣”⟩) ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ ((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))))
108101, 107syl6rbb 277 . . . . . 6 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (((𝑊 ++ ⟨“𝑣”⟩) ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑣”⟩)‘0) = 𝑋 ∧ ((𝑊 ++ ⟨“𝑣”⟩)‘((𝑁 + 2) − 2)) ≠ ((𝑊 ++ ⟨“𝑣”⟩)‘0))) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
10967, 91, 1083bitrd 294 . . . . 5 ((((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) ∧ 𝑣𝑉) → (({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
110109reubidva 3262 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → (∃!𝑣𝑉 ({(lastS‘𝑊), 𝑣} ∈ (Edg‘𝐺) ∧ {𝑣, (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11142, 110mpbid 222 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋))) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2)))
112111ex 449 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊‘0) = 𝑋 ∧ (lastS‘𝑊) ≠ 𝑋)) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
11312, 112sylbid 230 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑊 ∈ (𝑋𝑄𝑁) → ∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ (𝑋𝐻(𝑁 + 2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1630   ∈ wcel 2137   ≠ wne 2930  ∀wral 3048  ∃!wreu 3050  {crab 3052  Vcvv 3338  {cpr 4321  ‘cfv 6047  (class class class)co 6811   ↦ cmpt2 6813  0cc0 10126  1c1 10127   + caddc 10129   − cmin 10456  ℕcn 11210  2c2 11260  ℕ0cn0 11482  ℤcz 11567  ℤ≥cuz 11877  ..^cfzo 12657  ♯chash 13309  Word cword 13475  lastSclsw 13476   ++ cconcat 13477  ⟨“cs1 13478  Vtxcvtx 26071  Edgcedg 26136   WWalksN cwwlksn 26927   ClWWalksN cclwwlkn 27145   FriendGraph cfrgr 27408 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-n0 11483  df-xnn0 11554  df-z 11568  df-uz 11878  df-rp 12024  df-fz 12518  df-fzo 12658  df-hash 13310  df-word 13483  df-lsw 13484  df-concat 13485  df-s1 13486  df-wwlks 26931  df-wwlksn 26932  df-clwwlk 27103  df-clwwlkn 27147  df-frgr 27409 This theorem is referenced by:  numclwlk2lem2f1oOLD  27545
 Copyright terms: Public domain W3C validator