MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1lem Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1lem 28115
Description: Lemma for numclwwlk2lem1 28149. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-May-2021.) (Revised by AV, 15-Mar-2022.)
Assertion
Ref Expression
numclwwlk2lem1lem ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))

Proof of Theorem numclwwlk2lem1lem
StepHypRef Expression
1 wwlknbp1 27616 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 simpl2 1188 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 𝑊 ∈ Word (Vtx‘𝐺))
3 s1cl 13950 . . . . . . 7 (𝑋 ∈ (Vtx‘𝐺) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
43ad2antrl 726 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
5 nn0p1gt0 11920 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
653ad2ant1 1129 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
76adantr 483 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (𝑁 + 1))
8 breq2 5062 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
983ad2ant3 1131 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
109adantr 483 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
117, 10mpbird 259 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (♯‘𝑊))
12 ccatfv0 13931 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
132, 4, 11, 12syl3anc 1367 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
14 oveq1 7157 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
15143ad2ant3 1131 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
16 nn0cn 11901 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11058 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
19183ad2ant1 1129 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2015, 19eqtr2d 2857 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 = ((♯‘𝑊) − 1))
2120adantr 483 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑁 = ((♯‘𝑊) − 1))
2221fveq2d 6668 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)))
23 simpl2 1188 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
243adantl 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
256adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (𝑁 + 1))
269adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
2725, 26mpbird 259 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (♯‘𝑊))
28 hashneq0 13719 . . . . . . . . . . . . . 14 (𝑊 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
2928bicomd 225 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
30293ad2ant2 1130 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3130adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3227, 31mpbird 259 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ≠ ∅)
33 ccatval1lsw 13932 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3423, 24, 32, 33syl3anc 1367 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3522, 34eqtr2d 2857 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁))
3635neeq1d 3075 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) ↔ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3736biimpd 231 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3837impr 457 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0))
3913, 38jca 514 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
4039exp32 423 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
411, 40syl 17 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
42413imp21 1110 1 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  c0 4290   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cmin 10864  0cn0 11891  chash 13684  Word cword 13855  lastSclsw 13908   ++ cconcat 13916  ⟨“cs1 13943  Vtxcvtx 26775   WWalksN cwwlksn 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-wwlks 27602  df-wwlksn 27603
This theorem is referenced by:  numclwwlk2lem1  28149
  Copyright terms: Public domain W3C validator