Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem3 Structured version   Visualization version   GIF version

Theorem numclwwlk2lem3 27094
 Description: In a friendship graph, the size of the set of walks of length 𝑁 starting with a fixed vertex 𝑋 and ending not at this vertex equals the size of the set of all closed walks of length (𝑁 + 2) starting at this vertex 𝑋 and not having this vertex as last but 2 vertex. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 31-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
Assertion
Ref Expression
numclwwlk2lem3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (#‘(𝑋𝑄𝑁)) = (#‘(𝑋𝐻(𝑁 + 2))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑣,𝐻
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)   𝐻(𝑤,𝑛)

Proof of Theorem numclwwlk2lem3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ovex 6632 . . . 4 (𝑋𝐻(𝑁 + 2)) ∈ V
21a1i 11 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) ∈ V)
3 numclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
4 numclwwlk.q . . . 4 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
5 numclwwlk.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
6 numclwwlk.h . . . 4 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
7 eqid 2621 . . . 4 ( ∈ (𝑋𝐻(𝑁 + 2)) ↦ ( substr ⟨0, (𝑁 + 1)⟩)) = ( ∈ (𝑋𝐻(𝑁 + 2)) ↦ ( substr ⟨0, (𝑁 + 1)⟩))
83, 4, 5, 6, 7numclwlk2lem2f1o 27093 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ( ∈ (𝑋𝐻(𝑁 + 2)) ↦ ( substr ⟨0, (𝑁 + 1)⟩)):(𝑋𝐻(𝑁 + 2))–1-1-onto→(𝑋𝑄𝑁))
92, 8hasheqf1od 13084 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (#‘(𝑋𝐻(𝑁 + 2))) = (#‘(𝑋𝑄𝑁)))
109eqcomd 2627 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (#‘(𝑋𝑄𝑁)) = (#‘(𝑋𝐻(𝑁 + 2))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  {crab 2911  Vcvv 3186  ⟨cop 4154   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604   ↦ cmpt2 6606  0cc0 9880  1c1 9881   + caddc 9883   − cmin 10210  ℕcn 10964  2c2 11014  #chash 13057   lastS clsw 13231   substr csubstr 13234  Vtxcvtx 25774   WWalksN cwwlksn 26587   ClWWalksN cclwwlksn 26743   FriendGraph cfrgr 26986 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-substr 13242  df-wwlks 26591  df-wwlksn 26592  df-clwwlks 26744  df-clwwlksn 26745  df-frgr 26987 This theorem is referenced by:  numclwwlk2  27095
 Copyright terms: Public domain W3C validator