MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3 Structured version   Visualization version   GIF version

Theorem numclwwlk3 26402
Description: Statement 12 in [Huneke] p. 2: "Thus f(n) = (k - 1)f(n - 2) + k^(n-2)." - the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) is the sum of the number of the closed walks v(0) ... v(n-2) v(n-1) v(n) with v(n-2) = v(n) (see numclwwlk1 26391) and with v(n-2) =/= v(n) ( see numclwwlk2 26400): f(n) = kf(n-2) + k^(n-2) - f(n-2) = (k - 1)f(n - 2) + k^(n-2). (Contributed by Alexander van der Vekens, 26-Aug-2018.)
Hypotheses
Ref Expression
numclwwlk.c 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
numclwwlk.g 𝐺 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
Assertion
Ref Expression
numclwwlk3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑁   𝑛,𝑉   𝑤,𝐶   𝑤,𝑁   𝐶,𝑛,𝑣,𝑤   𝑣,𝑁   𝑛,𝑋,𝑣,𝑤   𝑣,𝑉   𝑤,𝐸   𝑤,𝑉   𝑤,𝐹   𝑤,𝑄   𝑤,𝐾   𝑤,𝐺   𝑣,𝐸   𝑣,𝐻,𝑤
Allowed substitution hints:   𝑄(𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐺(𝑣,𝑛)   𝐻(𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rusisusgra 26224 . . . 4 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 USGrph 𝐸)
21ad2antrr 757 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 USGrph 𝐸)
3 simp1 1053 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ∈ Fin)
43adantl 480 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ∈ Fin)
5 simp2 1054 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋𝑉)
65adantl 480 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
7 uzuzle23 11561 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
873ad2ant3 1076 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘2))
98adantl 480 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘2))
10 numclwwlk.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ ((𝑉 ClWWalksN 𝐸)‘𝑛))
11 numclwwlk.f . . . 4 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ (𝑤‘0) = 𝑣})
12 numclwwlk.g . . . 4 𝐺 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
13 numclwwlk.q . . . 4 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
14 numclwwlk.h . . . 4 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝐶𝑛) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
1510, 11, 12, 13, 14numclwwlk3lem 26401 . . 3 (((𝑉 USGrph 𝐸𝑉 ∈ Fin ∧ 𝑋𝑉) ∧ 𝑁 ∈ (ℤ‘2)) → (#‘(𝑋𝐹𝑁)) = ((#‘(𝑋𝐻𝑁)) + (#‘(𝑋𝐺𝑁))))
162, 4, 6, 9, 15syl31anc 1320 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = ((#‘(𝑋𝐻𝑁)) + (#‘(𝑋𝐺𝑁))))
1710, 11, 12, 13, 14numclwwlk2 26400 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐻𝑁)) = ((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))))
18 simpl 471 . . . . 5 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) → ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾)
1918, 3anim12ci 588 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑉 ∈ Fin ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾))
20 3simpc 1052 . . . . 5 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉𝑁 ∈ (ℤ‘3)))
2120adantl 480 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉𝑁 ∈ (ℤ‘3)))
2210, 11, 12numclwwlk1 26391 . . . 4 (((𝑉 ∈ Fin ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐺𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
2319, 21, 22syl2anc 690 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐺𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
2417, 23oveq12d 6545 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐻𝑁)) + (#‘(𝑋𝐺𝑁))) = (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))))
25 rusgraprop 26222 . . . . 5 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾 → (𝑉 USGrph 𝐸𝐾 ∈ ℕ0 ∧ ∀𝑢𝑉 ((𝑉 VDeg 𝐸)‘𝑢) = 𝐾))
26 nn0cn 11149 . . . . . 6 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
27263ad2ant2 1075 . . . . 5 ((𝑉 USGrph 𝐸𝐾 ∈ ℕ0 ∧ ∀𝑢𝑉 ((𝑉 VDeg 𝐸)‘𝑢) = 𝐾) → 𝐾 ∈ ℂ)
2825, 27syl 17 . . . 4 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝐾 ∈ ℂ)
2928ad2antrr 757 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
30 usgrav 25633 . . . . . . . . 9 (𝑉 USGrph 𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
3130simprd 477 . . . . . . . 8 (𝑉 USGrph 𝐸𝐸 ∈ V)
321, 31syl 17 . . . . . . 7 (⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝐸 ∈ V)
3332adantr 479 . . . . . 6 ((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) → 𝐸 ∈ V)
3433, 3anim12ci 588 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑉 ∈ Fin ∧ 𝐸 ∈ V))
35 uz3m2nn 11563 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
3635nnnn0d 11198 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ0)
37363ad2ant3 1076 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ0)
385, 37jca 552 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ0))
3938adantl 480 . . . . 5 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ0))
4010, 11numclwwlkffin 26375 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐸 ∈ V) ∧ (𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ0)) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
4134, 39, 40syl2anc 690 . . . 4 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
42 hashcl 12961 . . . . 5 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0)
4342nn0cnd 11200 . . . 4 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
4441, 43syl 17 . . 3 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
45 numclwlk3lem3 26366 . . 3 ((𝐾 ∈ ℂ ∧ (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
4629, 44, 9, 45syl3anc 1317 . 2 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (((𝐾↑(𝑁 − 2)) − (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾 · (#‘(𝑋𝐹(𝑁 − 2))))) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
4716, 24, 463eqtrd 2647 1 (((⟨𝑉, 𝐸⟩ RegUSGrph 𝐾𝑉 FriendGrph 𝐸) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑁)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑁 − 2)))) + (𝐾↑(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  {crab 2899  Vcvv 3172  cop 4130   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cmpt2 6529  Fincfn 7818  cc 9790  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cmin 10117  2c2 10917  3c3 10918  0cn0 11139  cuz 11519  cexp 12677  #chash 12934   lastS clsw 13093   USGrph cusg 25625   WWalksN cwwlkn 25972   ClWWalksN cclwwlkn 26043   VDeg cvdg 26186   RegUSGrph crusgra 26216   FriendGrph cfrgra 26281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-xadd 11779  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-word 13100  df-lsw 13101  df-concat 13102  df-s1 13103  df-substr 13104  df-s2 13390  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-usgra 25628  df-nbgra 25715  df-wlk 25802  df-wwlk 25973  df-wwlkn 25974  df-clwwlk 26045  df-clwwlkn 26046  df-vdgr 26187  df-rgra 26217  df-rusgra 26218  df-frgra 26282
This theorem is referenced by:  numclwwlk5  26405
  Copyright terms: Public domain W3C validator