Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk5 Structured version   Visualization version   GIF version

Theorem numclwwlk5 27113
 Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.)
Hypotheses
Ref Expression
numclwwlk4.v 𝑉 = (Vtx‘𝐺)
numclwwlk4.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
numclwwlk5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑤,𝐹   𝑤,𝐾   𝑃,𝑛,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk5
Dummy variables 𝑚 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1062 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐺 RegUSGraph 𝐾)
2 simpr1 1065 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝑋𝑉)
3 numclwwlk4.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 26344 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
543adant2 1078 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
65adantl 482 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph )
7 simpr1 1065 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
8 ne0i 3902 . . . . . . . . . . 11 (𝑋𝑉𝑉 ≠ ∅)
98adantr 481 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅)
103frusgrnn0 26350 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
116, 7, 9, 10syl3anc 1323 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
1211ex 450 . . . . . . . 8 (𝑋𝑉 → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
13123ad2ant1 1080 . . . . . . 7 ((𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
1413impcom 446 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
151, 2, 143jca 1240 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0))
16 simpr3 1067 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 2 ∥ (𝐾 − 1))
17 numclwwlk4.f . . . . . 6 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
183, 17numclwwlk5lem 27112 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
1915, 16, 18sylc 65 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1)
2019a1i 11 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1))
21 eleq1 2686 . . . . 5 (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈ ℙ))
22 breq1 4621 . . . . 5 (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1)))
2321, 223anbi23d 1399 . . . 4 (𝑃 = 2 → ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))))
2423anbi2d 739 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)))))
25 oveq2 6618 . . . . . 6 (𝑃 = 2 → (𝑋𝐹𝑃) = (𝑋𝐹2))
2625fveq2d 6157 . . . . 5 (𝑃 = 2 → (#‘(𝑋𝐹𝑃)) = (#‘(𝑋𝐹2)))
27 id 22 . . . . 5 (𝑃 = 2 → 𝑃 = 2)
2826, 27oveq12d 6628 . . . 4 (𝑃 = 2 → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((#‘(𝑋𝐹2)) mod 2))
2928eqeq1d 2623 . . 3 (𝑃 = 2 → (((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1 ↔ ((#‘(𝑋𝐹2)) mod 2) = 1))
3020, 24, 293imtr4d 283 . 2 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
31 3simpa 1056 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3231adantr 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3332adantl 482 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
34 simprl3 1106 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin)
35 simprr1 1107 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋𝑉)
36 eldifsn 4292 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
37 oddprmge3 15343 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
3836, 37sylbir 225 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℤ‘3))
3938ex 450 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
40393ad2ant2 1081 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4140adantl 482 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4241impcom 446 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈ (ℤ‘3))
43 fveq1 6152 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘0) = (𝑤‘0))
4443eqeq1d 2623 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘0) = 𝑣 ↔ (𝑤‘0) = 𝑣))
45 fveq2 6153 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ( lastS ‘𝑢) = ( lastS ‘𝑤))
4645neeq1d 2849 . . . . . . . . . . 11 (𝑢 = 𝑤 → (( lastS ‘𝑢) ≠ 𝑣 ↔ ( lastS ‘𝑤) ≠ 𝑣))
4744, 46anbi12d 746 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)))
4847cbvrabv 3188 . . . . . . . . 9 {𝑢 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)}
4948a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ ℕ) → {𝑢 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
5049mpt2eq3ia 6680 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑢 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
51 eqeq2 2632 . . . . . . . . . 10 (𝑧 = 𝑣 → ((𝑢‘0) = 𝑧 ↔ (𝑢‘0) = 𝑣))
5251anbi1d 740 . . . . . . . . 9 (𝑧 = 𝑣 → (((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))))
5352rabbidv 3180 . . . . . . . 8 (𝑧 = 𝑣 → {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))})
54 oveq1 6617 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚 ClWWalksN 𝐺) = (𝑛 ClWWalksN 𝐺))
55 oveq1 6617 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 2) = (𝑛 − 2))
5655fveq2d 6157 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑢‘(𝑚 − 2)) = (𝑢‘(𝑛 − 2)))
5756neeq1d 2849 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑢‘(𝑚 − 2)) ≠ (𝑢‘0) ↔ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)))
5857anbi2d 739 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))))
5954, 58rabeqbidv 3184 . . . . . . . . 9 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))})
60 fveq1 6152 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘(𝑛 − 2)) = (𝑤‘(𝑛 − 2)))
6160, 43neeq12d 2851 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) ≠ (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0)))
6244, 61anbi12d 746 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))))
6362cbvrabv 3188 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}
6459, 63syl6eq 2671 . . . . . . . 8 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6553, 64cbvmpt2v 6695 . . . . . . 7 (𝑧𝑉, 𝑚 ∈ ℕ ↦ {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6660, 43eqeq12d 2636 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) = (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) = (𝑤‘0)))
6744, 66anbi12d 746 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))))
6867cbvrabv 3188 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}
6968a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ (ℤ‘2)) → {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
7069mpt2eq3ia 6680 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
713, 50, 17, 65, 70numclwwlk3 27110 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑃 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7233, 34, 35, 42, 71syl13anc 1325 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7372oveq1d 6625 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
74123ad2ant1 1080 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
7574impcom 446 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
7675nn0zd 11431 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
77 peano2zm 11371 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
78 zre 11332 . . . . . . . . 9 ((𝐾 − 1) ∈ ℤ → (𝐾 − 1) ∈ ℝ)
7976, 77, 783syl 18 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
80 simpl3 1064 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
81 simpr1 1065 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑋𝑉)
82 prmm2nn0 15341 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
83823ad2ant2 1081 . . . . . . . . . . . 12 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈ ℕ0)
8483adantl 482 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈ ℕ0)
8580, 81, 843jca 1240 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0))
8617, 3numclwwlkffin0 27084 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0) → (𝑋𝐹(𝑃 − 2)) ∈ Fin)
87 hashcl 13094 . . . . . . . . . 10 ((𝑋𝐹(𝑃 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8885, 86, 873syl 18 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8988nn0red 11303 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℝ)
9079, 89remulcld 10021 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ)
9175nn0red 11303 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ)
9291, 84reexpcld 12972 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈ ℝ)
93 prmnn 15319 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9493nnrpd 11821 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
95943ad2ant2 1081 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℝ+)
9695adantl 482 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
9790, 92, 963jca 1240 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
9897adantl 482 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
99 modaddabs 12655 . . . . . 6 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
10099eqcomd 2627 . . . . 5 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
10198, 100syl 17 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
102933ad2ant2 1081 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
103102adantl 482 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
104 nn0z 11351 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
10575, 104, 773syl 18 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
10688nn0zd 11431 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ)
107103, 105, 1063jca 1240 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ))
108 simpr3 1067 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
109 mulmoddvds 14982 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0))
110107, 108, 109sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0)
111 simpr2 1066 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ)
112111, 76jca 554 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ))
113 powm2modprm 15439 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1))
114112, 108, 113sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)
115110, 114oveq12d 6628 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1))
116115oveq1d 6625 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
117 0p1e1 11083 . . . . . . . . . 10 (0 + 1) = 1
118117oveq1i 6620 . . . . . . . . 9 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
11993nnred 10986 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
120 prmgt1 15340 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
121 1mod 12649 . . . . . . . . . 10 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
122119, 120, 121syl2anc 692 . . . . . . . . 9 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
123118, 122syl5eq 2667 . . . . . . . 8 (𝑃 ∈ ℙ → ((0 + 1) mod 𝑃) = 1)
1241233ad2ant2 1081 . . . . . . 7 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1)
125124adantl 482 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
126116, 125eqtrd 2655 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
127126adantl 482 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
12873, 101, 1273eqtrd 2659 . . 3 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
129128ex 450 . 2 (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
13030, 129pm2.61ine 2873 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  {crab 2911   ∖ cdif 3556  ∅c0 3896  {csn 4153   class class class wbr 4618  ‘cfv 5852  (class class class)co 6610   ↦ cmpt2 6612  Fincfn 7906  ℝcr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   < clt 10025   − cmin 10217  ℕcn 10971  2c2 11021  3c3 11022  ℕ0cn0 11243  ℤcz 11328  ℤ≥cuz 11638  ℝ+crp 11783   mod cmo 12615  ↑cexp 12807  #chash 13064   lastS clsw 13238   ∥ cdvds 14914  ℙcprime 15316  Vtxcvtx 25787   FinUSGraph cfusgr 26109   RegUSGraph crusgr 26335   WWalksN cwwlksn 26600   ClWWalksN cclwwlksn 26756   FriendGraph cfrgr 26999 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-xnn0 11315  df-z 11329  df-uz 11639  df-rp 11784  df-xadd 11898  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-word 13245  df-lsw 13246  df-concat 13247  df-s1 13248  df-substr 13249  df-s2 13537  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-dvds 14915  df-gcd 15148  df-prm 15317  df-phi 15402  df-vtx 25789  df-iedg 25790  df-edg 25853  df-uhgr 25862  df-ushgr 25863  df-upgr 25886  df-umgr 25887  df-uspgr 25951  df-usgr 25952  df-fusgr 26110  df-nbgr 26128  df-vtxdg 26262  df-rgr 26336  df-rusgr 26337  df-wwlks 26604  df-wwlksn 26605  df-clwwlks 26757  df-clwwlksn 26758  df-frgr 27000 This theorem is referenced by:  numclwwlk6  27115
 Copyright terms: Public domain W3C validator