MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk5 Structured version   Visualization version   GIF version

Theorem numclwwlk5 27113
Description: Statement 13 in [Huneke] p. 2: "Let p be a prime divisor of k-1; then f(p) = 1 (mod p) [for each vertex v]". (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.)
Hypotheses
Ref Expression
numclwwlk4.v 𝑉 = (Vtx‘𝐺)
numclwwlk4.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
numclwwlk5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑤,𝐹   𝑤,𝐾   𝑃,𝑛,𝑣,𝑤
Allowed substitution hints:   𝐹(𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlk5
Dummy variables 𝑚 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1062 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐺 RegUSGraph 𝐾)
2 simpr1 1065 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝑋𝑉)
3 numclwwlk4.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43finrusgrfusgr 26344 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
543adant2 1078 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
65adantl 482 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FinUSGraph )
7 simpr1 1065 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐺 RegUSGraph 𝐾)
8 ne0i 3902 . . . . . . . . . . 11 (𝑋𝑉𝑉 ≠ ∅)
98adantr 481 . . . . . . . . . 10 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝑉 ≠ ∅)
103frusgrnn0 26350 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
116, 7, 9, 10syl3anc 1323 . . . . . . . . 9 ((𝑋𝑉 ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
1211ex 450 . . . . . . . 8 (𝑋𝑉 → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
13123ad2ant1 1080 . . . . . . 7 ((𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
1413impcom 446 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
151, 2, 143jca 1240 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0))
16 simpr3 1067 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → 2 ∥ (𝐾 − 1))
17 numclwwlk4.f . . . . . 6 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
183, 17numclwwlk5lem 27112 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑋𝑉𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((#‘(𝑋𝐹2)) mod 2) = 1))
1915, 16, 18sylc 65 . . . 4 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1)
2019a1i 11 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹2)) mod 2) = 1))
21 eleq1 2686 . . . . 5 (𝑃 = 2 → (𝑃 ∈ ℙ ↔ 2 ∈ ℙ))
22 breq1 4621 . . . . 5 (𝑃 = 2 → (𝑃 ∥ (𝐾 − 1) ↔ 2 ∥ (𝐾 − 1)))
2321, 223anbi23d 1399 . . . 4 (𝑃 = 2 → ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) ↔ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1))))
2423anbi2d 739 . . 3 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) ↔ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉 ∧ 2 ∈ ℙ ∧ 2 ∥ (𝐾 − 1)))))
25 oveq2 6618 . . . . . 6 (𝑃 = 2 → (𝑋𝐹𝑃) = (𝑋𝐹2))
2625fveq2d 6157 . . . . 5 (𝑃 = 2 → (#‘(𝑋𝐹𝑃)) = (#‘(𝑋𝐹2)))
27 id 22 . . . . 5 (𝑃 = 2 → 𝑃 = 2)
2826, 27oveq12d 6628 . . . 4 (𝑃 = 2 → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((#‘(𝑋𝐹2)) mod 2))
2928eqeq1d 2623 . . 3 (𝑃 = 2 → (((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1 ↔ ((#‘(𝑋𝐹2)) mod 2) = 1))
3020, 24, 293imtr4d 283 . 2 (𝑃 = 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
31 3simpa 1056 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3231adantr 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
3332adantl 482 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
34 simprl3 1106 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑉 ∈ Fin)
35 simprr1 1107 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑋𝑉)
36 eldifsn 4292 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
37 oddprmge3 15343 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
3836, 37sylbir 225 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℤ‘3))
3938ex 450 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
40393ad2ant2 1081 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4140adantl 482 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ≠ 2 → 𝑃 ∈ (ℤ‘3)))
4241impcom 446 . . . . . 6 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → 𝑃 ∈ (ℤ‘3))
43 fveq1 6152 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘0) = (𝑤‘0))
4443eqeq1d 2623 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘0) = 𝑣 ↔ (𝑤‘0) = 𝑣))
45 fveq2 6153 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ( lastS ‘𝑢) = ( lastS ‘𝑤))
4645neeq1d 2849 . . . . . . . . . . 11 (𝑢 = 𝑤 → (( lastS ‘𝑢) ≠ 𝑣 ↔ ( lastS ‘𝑤) ≠ 𝑣))
4744, 46anbi12d 746 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)))
4847cbvrabv 3188 . . . . . . . . 9 {𝑢 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)}
4948a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ ℕ) → {𝑢 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)} = {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
5049mpt2eq3ia 6680 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑢 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ ( lastS ‘𝑢) ≠ 𝑣)}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
51 eqeq2 2632 . . . . . . . . . 10 (𝑧 = 𝑣 → ((𝑢‘0) = 𝑧 ↔ (𝑢‘0) = 𝑣))
5251anbi1d 740 . . . . . . . . 9 (𝑧 = 𝑣 → (((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))))
5352rabbidv 3180 . . . . . . . 8 (𝑧 = 𝑣 → {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))})
54 oveq1 6617 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝑚 ClWWalksN 𝐺) = (𝑛 ClWWalksN 𝐺))
55 oveq1 6617 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 2) = (𝑛 − 2))
5655fveq2d 6157 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑢‘(𝑚 − 2)) = (𝑢‘(𝑛 − 2)))
5756neeq1d 2849 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑢‘(𝑚 − 2)) ≠ (𝑢‘0) ↔ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)))
5857anbi2d 739 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0)) ↔ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))))
5954, 58rabeqbidv 3184 . . . . . . . . 9 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))})
60 fveq1 6152 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑢‘(𝑛 − 2)) = (𝑤‘(𝑛 − 2)))
6160, 43neeq12d 2851 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) ≠ (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0)))
6244, 61anbi12d 746 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))))
6362cbvrabv 3188 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))}
6459, 63syl6eq 2671 . . . . . . . 8 (𝑚 = 𝑛 → {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6553, 64cbvmpt2v 6695 . . . . . . 7 (𝑧𝑉, 𝑚 ∈ ℕ ↦ {𝑢 ∈ (𝑚 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑧 ∧ (𝑢‘(𝑚 − 2)) ≠ (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
6660, 43eqeq12d 2636 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑢‘(𝑛 − 2)) = (𝑢‘0) ↔ (𝑤‘(𝑛 − 2)) = (𝑤‘0)))
6744, 66anbi12d 746 . . . . . . . . . 10 (𝑢 = 𝑤 → (((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0)) ↔ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))))
6867cbvrabv 3188 . . . . . . . . 9 {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))}
6968a1i 11 . . . . . . . 8 ((𝑣𝑉𝑛 ∈ (ℤ‘2)) → {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
7069mpt2eq3ia 6680 . . . . . . 7 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑢 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑢‘0) = 𝑣 ∧ (𝑢‘(𝑛 − 2)) = (𝑢‘0))}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
713, 50, 17, 65, 70numclwwlk3 27110 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ∈ Fin ∧ 𝑋𝑉𝑃 ∈ (ℤ‘3))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7233, 34, 35, 42, 71syl13anc 1325 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (#‘(𝑋𝐹𝑃)) = (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))))
7372oveq1d 6625 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
74123ad2ant1 1080 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) → 𝐾 ∈ ℕ0))
7574impcom 446 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℕ0)
7675nn0zd 11431 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℤ)
77 peano2zm 11371 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
78 zre 11332 . . . . . . . . 9 ((𝐾 − 1) ∈ ℤ → (𝐾 − 1) ∈ ℝ)
7976, 77, 783syl 18 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
80 simpl3 1064 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑉 ∈ Fin)
81 simpr1 1065 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑋𝑉)
82 prmm2nn0 15341 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
83823ad2ant2 1081 . . . . . . . . . . . 12 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → (𝑃 − 2) ∈ ℕ0)
8483adantl 482 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 − 2) ∈ ℕ0)
8580, 81, 843jca 1240 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0))
8617, 3numclwwlkffin0 27084 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑃 − 2) ∈ ℕ0) → (𝑋𝐹(𝑃 − 2)) ∈ Fin)
87 hashcl 13094 . . . . . . . . . 10 ((𝑋𝐹(𝑃 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8885, 86, 873syl 18 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℕ0)
8988nn0red 11303 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℝ)
9079, 89remulcld 10021 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ)
9175nn0red 11303 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝐾 ∈ ℝ)
9291, 84reexpcld 12972 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾↑(𝑃 − 2)) ∈ ℝ)
93 prmnn 15319 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9493nnrpd 11821 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
95943ad2ant2 1081 . . . . . . . 8 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℝ+)
9695adantl 482 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℝ+)
9790, 92, 963jca 1240 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
9897adantl 482 . . . . 5 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
99 modaddabs 12655 . . . . . 6 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃))
10099eqcomd 2627 . . . . 5 ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) ∈ ℝ ∧ (𝐾↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
10198, 100syl 17 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) + (𝐾↑(𝑃 − 2))) mod 𝑃) = (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
102933ad2ant2 1081 . . . . . . . . . . 11 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → 𝑃 ∈ ℕ)
103102adantl 482 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℕ)
104 nn0z 11351 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
10575, 104, 773syl 18 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝐾 − 1) ∈ ℤ)
10688nn0zd 11431 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ)
107103, 105, 1063jca 1240 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ))
108 simpr3 1067 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∥ (𝐾 − 1))
109 mulmoddvds 14982 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ (𝐾 − 1) ∈ ℤ ∧ (#‘(𝑋𝐹(𝑃 − 2))) ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0))
110107, 108, 109sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) = 0)
111 simpr2 1066 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → 𝑃 ∈ ℙ)
112111, 76jca 554 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ))
113 powm2modprm 15439 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℤ) → (𝑃 ∥ (𝐾 − 1) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1))
114112, 108, 113sylc 65 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((𝐾↑(𝑃 − 2)) mod 𝑃) = 1)
115110, 114oveq12d 6628 . . . . . . 7 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) = (0 + 1))
116115oveq1d 6625 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((0 + 1) mod 𝑃))
117 0p1e1 11083 . . . . . . . . . 10 (0 + 1) = 1
118117oveq1i 6620 . . . . . . . . 9 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
11993nnred 10986 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
120 prmgt1 15340 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
121 1mod 12649 . . . . . . . . . 10 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
122119, 120, 121syl2anc 692 . . . . . . . . 9 (𝑃 ∈ ℙ → (1 mod 𝑃) = 1)
123118, 122syl5eq 2667 . . . . . . . 8 (𝑃 ∈ ℙ → ((0 + 1) mod 𝑃) = 1)
1241233ad2ant2 1081 . . . . . . 7 ((𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)) → ((0 + 1) mod 𝑃) = 1)
125124adantl 482 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((0 + 1) mod 𝑃) = 1)
126116, 125eqtrd 2655 . . . . 5 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
127126adantl 482 . . . 4 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → (((((𝐾 − 1) · (#‘(𝑋𝐹(𝑃 − 2)))) mod 𝑃) + ((𝐾↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
12873, 101, 1273eqtrd 2659 . . 3 ((𝑃 ≠ 2 ∧ ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1)))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
129128ex 450 . 2 (𝑃 ≠ 2 → (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1))
13030, 129pm2.61ine 2873 1 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin) ∧ (𝑋𝑉𝑃 ∈ ℙ ∧ 𝑃 ∥ (𝐾 − 1))) → ((#‘(𝑋𝐹𝑃)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  {crab 2911  cdif 3556  c0 3896  {csn 4153   class class class wbr 4618  cfv 5852  (class class class)co 6610  cmpt2 6612  Fincfn 7906  cr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   < clt 10025  cmin 10217  cn 10971  2c2 11021  3c3 11022  0cn0 11243  cz 11328  cuz 11638  +crp 11783   mod cmo 12615  cexp 12807  #chash 13064   lastS clsw 13238  cdvds 14914  cprime 15316  Vtxcvtx 25787   FinUSGraph cfusgr 26109   RegUSGraph crusgr 26335   WWalksN cwwlksn 26600   ClWWalksN cclwwlksn 26756   FriendGraph cfrgr 26999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-xnn0 11315  df-z 11329  df-uz 11639  df-rp 11784  df-xadd 11898  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-word 13245  df-lsw 13246  df-concat 13247  df-s1 13248  df-substr 13249  df-s2 13537  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-dvds 14915  df-gcd 15148  df-prm 15317  df-phi 15402  df-vtx 25789  df-iedg 25790  df-edg 25853  df-uhgr 25862  df-ushgr 25863  df-upgr 25886  df-umgr 25887  df-uspgr 25951  df-usgr 25952  df-fusgr 26110  df-nbgr 26128  df-vtxdg 26262  df-rgr 26336  df-rusgr 26337  df-wwlks 26604  df-wwlksn 26605  df-clwwlks 26757  df-clwwlksn 26758  df-frgr 27000
This theorem is referenced by:  numclwwlk6  27115
  Copyright terms: Public domain W3C validator