Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovf2num Structured version   Visualization version   GIF version

Theorem numclwwlkovf2num 27068
 Description: In a 𝐾-regular graph, therere are 𝐾 closed walks of length 2 starting at a fixed vertex. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 28-May-2021.)
Hypotheses
Ref Expression
numclwwlkovf.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
numclwwlkffin.v 𝑉 = (Vtx‘𝐺)
numclwwlkovfel2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
numclwwlkovf2num ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (#‘(𝑋𝐹2)) = 𝐾)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉
Allowed substitution hints:   𝐸(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)   𝐾(𝑤,𝑣,𝑛)

Proof of Theorem numclwwlkovf2num
StepHypRef Expression
1 rusgrusgr 26324 . . . 4 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph )
2 numclwwlkovf.f . . . . 5 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
3 numclwwlkffin.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 eqid 2626 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
52, 3, 4numclwwlkovf2 27067 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝑋𝐹2) = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)})
61, 5sylan 488 . . 3 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝑋𝐹2) = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)})
76fveq2d 6154 . 2 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (#‘(𝑋𝐹2)) = (#‘{𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)}))
8 3ancomb 1045 . . . . . 6 (((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋))
98a1i 11 . . . . 5 (𝑤 ∈ Word 𝑉 → (((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)))
109rabbiia 3178 . . . 4 {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)}
1110fveq2i 6153 . . 3 (#‘{𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (#‘{𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)})
123rusgrnumwrdl2 26346 . . 3 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (#‘{𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ (𝑤‘0) = 𝑋 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
1311, 12syl5eqr 2674 . 2 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (#‘{𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ (𝑤‘0) = 𝑋)}) = 𝐾)
147, 13eqtrd 2660 1 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (#‘(𝑋𝐹2)) = 𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992  {crab 2916  {cpr 4155   class class class wbr 4618  ‘cfv 5850  (class class class)co 6605   ↦ cmpt2 6607  0cc0 9881  1c1 9882  ℕcn 10965  2c2 11015  #chash 13054  Word cword 13225  Vtxcvtx 25769  Edgcedg 25834   USGraph cusgr 25932   RegUSGraph crusgr 26316   ClWWalksN cclwwlksn 26737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-xadd 11891  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-lsw 13234  df-edg 25835  df-uhgr 25844  df-ushgr 25845  df-upgr 25868  df-umgr 25869  df-uspgr 25933  df-usgr 25934  df-nbgr 26109  df-vtxdg 26243  df-rgr 26317  df-rusgr 26318  df-clwwlks 26738  df-clwwlksn 26739 This theorem is referenced by:  numclwwlk5lem  27093
 Copyright terms: Public domain W3C validator