Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovfel2 Structured version   Visualization version   GIF version

Theorem numclwwlkovfel2 27089
 Description: Properties of an element of the value of operation 𝐹. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.)
Hypotheses
Ref Expression
numclwwlkovf.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
numclwwlkffin.v 𝑉 = (Vtx‘𝐺)
numclwwlkovfel2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
numclwwlkovfel2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝐴 ∈ (𝑋𝐹𝑁) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝐴,𝑖   𝑤,𝐴   𝑖,𝐺
Allowed substitution hints:   𝐴(𝑣,𝑛)   𝐸(𝑤,𝑣,𝑖,𝑛)   𝐹(𝑤,𝑣,𝑖,𝑛)   𝑁(𝑖)   𝑉(𝑤,𝑖)   𝑋(𝑖)

Proof of Theorem numclwwlkovfel2
StepHypRef Expression
1 numclwwlkovf.f . . . . . 6 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
21numclwwlkovf 27086 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
32ancoms 469 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
433adant1 1077 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
54eleq2d 2684 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝐴 ∈ (𝑋𝐹𝑁) ↔ 𝐴 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}))
6 numclwwlkffin.v . . . . . 6 𝑉 = (Vtx‘𝐺)
7 numclwwlkovfel2.e . . . . . 6 𝐸 = (Edg‘𝐺)
86, 7isclwwlksnx 26773 . . . . 5 (𝑁 ∈ ℕ → (𝐴 ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁)))
983ad2ant2 1081 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝐴 ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁)))
109anbi1d 740 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → ((𝐴 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ↔ (((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁) ∧ (𝐴‘0) = 𝑋)))
11 fveq1 6152 . . . . 5 (𝑤 = 𝐴 → (𝑤‘0) = (𝐴‘0))
1211eqeq1d 2623 . . . 4 (𝑤 = 𝐴 → ((𝑤‘0) = 𝑋 ↔ (𝐴‘0) = 𝑋))
1312elrab 3350 . . 3 (𝐴 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ (𝐴 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋))
14 df-3an 1038 . . 3 (((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋) ↔ (((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁) ∧ (𝐴‘0) = 𝑋))
1510, 13, 143bitr4g 303 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝐴 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋)))
165, 15bitrd 268 1 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ ∧ 𝑋𝑉) → (𝐴 ∈ (𝑋𝐹𝑁) ↔ ((𝐴 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝐴), (𝐴‘0)} ∈ 𝐸) ∧ (#‘𝐴) = 𝑁 ∧ (𝐴‘0) = 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  {crab 2911  {cpr 4155  ‘cfv 5852  (class class class)co 6610   ↦ cmpt2 6612  0cc0 9888  1c1 9889   + caddc 9891   − cmin 10218  ℕcn 10972  ..^cfzo 12414  #chash 13065  Word cword 13238   lastS clsw 13239  Vtxcvtx 25791  Edgcedg 25856   USGraph cusgr 25954   ClWWalksN cclwwlksn 26760 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-hash 13066  df-word 13246  df-clwwlks 26761  df-clwwlksn 26762 This theorem is referenced by:  numclwwlkovf2ex  27092  numclwlk1lem2foa  27096  numclwlk1lem2fo  27100
 Copyright terms: Public domain W3C validator