MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovgel Structured version   Visualization version   GIF version

Theorem numclwwlkovgel 27077
Description: Properties of an element of the value of operation 𝐶. (Contributed by Alexander van der Vekens, 24-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypothesis
Ref Expression
numclwwlkovg.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
numclwwlkovgel ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ (𝑋𝐶𝑁) ↔ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑃
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑃(𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovgel
StepHypRef Expression
1 numclwwlkovg.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
21numclwwlkovg 27076 . . . 4 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
32eleq2d 2684 . . 3 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ (𝑋𝐶𝑁) ↔ 𝑃 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))}))
4 fveq1 6147 . . . . . 6 (𝑤 = 𝑃 → (𝑤‘0) = (𝑃‘0))
54eqeq1d 2623 . . . . 5 (𝑤 = 𝑃 → ((𝑤‘0) = 𝑋 ↔ (𝑃‘0) = 𝑋))
6 fveq1 6147 . . . . . 6 (𝑤 = 𝑃 → (𝑤‘(𝑁 − 2)) = (𝑃‘(𝑁 − 2)))
76, 4eqeq12d 2636 . . . . 5 (𝑤 = 𝑃 → ((𝑤‘(𝑁 − 2)) = (𝑤‘0) ↔ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))
85, 7anbi12d 746 . . . 4 (𝑤 = 𝑃 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0)) ↔ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))
98elrab 3346 . . 3 (𝑃 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ↔ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))
103, 9syl6bb 276 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ (𝑋𝐶𝑁) ↔ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)))))
11 3anass 1040 . 2 ((𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0)) ↔ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))
1210, 11syl6bbr 278 1 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑃 ∈ (𝑋𝐶𝑁) ↔ (𝑃 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑃‘0) = 𝑋 ∧ (𝑃‘(𝑁 − 2)) = (𝑃‘0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  cfv 5847  (class class class)co 6604  cmpt2 6606  0cc0 9880  cmin 10210  2c2 11014  cuz 11631   ClWWalksN cclwwlksn 26743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609
This theorem is referenced by:  numclwlk1lem2f1  27082
  Copyright terms: Public domain W3C validator