MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkqhash Structured version   Visualization version   GIF version

Theorem numclwwlkqhash 27088
Description: In a 𝐾-regular graph, the size of the set of walks of length 𝑛 starting with a fixed vertex 𝑣 and ending not at this vertex is the difference between 𝐾 to the power of 𝑛 and the size of the set of closed walks of length 𝑛 starting and ending at this vertex 𝑣. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Assertion
Ref Expression
numclwwlkqhash (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘(𝑋𝑄𝑁)) = ((𝐾𝑁) − (#‘(𝑋𝐹𝑁))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝐾   𝑤,𝑉
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝐹(𝑤,𝑣,𝑛)   𝐾(𝑣,𝑛)

Proof of Theorem numclwwlkqhash
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 numclwwlk.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 numclwwlk.q . . . . 5 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
31, 2numclwwlkovq 27087 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
43adantl 482 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
54fveq2d 6152 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘(𝑋𝑄𝑁)) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
6 eqid 2621 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}
7 eqid 2621 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}
86, 7, 1clwwlknclwwlkdifnum 26741 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}) = ((𝐾𝑁) − (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})))
9 ovex 6632 . . . . . 6 (𝑁 WWalksN 𝐺) ∈ V
109rabex 4773 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V
11 clwwlksvbij 26788 . . . . . 6 (𝑁 ∈ ℕ → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
1211ad2antll 764 . . . . 5 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
13 hasheqf1oi 13080 . . . . 5 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} → (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (#‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})))
1410, 12, 13mpsyl 68 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (#‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}))
15 numclwwlk.f . . . . . . . 8 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
1615numclwwlkovf 27069 . . . . . . 7 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
1716adantl 482 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑋𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋})
1817eqcomd 2627 . . . . 5 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} = (𝑋𝐹𝑁))
1918fveq2d 6152 . . . 4 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}) = (#‘(𝑋𝐹𝑁)))
2014, 19eqtrd 2655 . . 3 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}) = (#‘(𝑋𝐹𝑁)))
2120oveq2d 6620 . 2 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝐾𝑁) − (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (( lastS ‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)})) = ((𝐾𝑁) − (#‘(𝑋𝐹𝑁))))
225, 8, 213eqtrd 2659 1 (((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (#‘(𝑋𝑄𝑁)) = ((𝐾𝑁) − (#‘(𝑋𝐹𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  {crab 2911  Vcvv 3186   class class class wbr 4613  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  cmpt2 6606  Fincfn 7899  0cc0 9880  cmin 10210  cn 10964  cexp 12800  #chash 13057   lastS clsw 13231  Vtxcvtx 25774   RegUSGraph crusgr 26322   WWalksN cwwlksn 26587   ClWWalksN cclwwlksn 26743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-rp 11777  df-xadd 11891  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-word 13238  df-lsw 13239  df-concat 13240  df-s1 13241  df-substr 13242  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-vtx 25776  df-iedg 25777  df-edg 25840  df-uhgr 25849  df-ushgr 25850  df-upgr 25873  df-umgr 25874  df-uspgr 25938  df-usgr 25939  df-fusgr 26097  df-nbgr 26115  df-vtxdg 26249  df-rgr 26323  df-rusgr 26324  df-wwlks 26591  df-wwlksn 26592  df-clwwlks 26744  df-clwwlksn 26745
This theorem is referenced by:  numclwwlk2  27095
  Copyright terms: Public domain W3C validator