MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numdensq Structured version   Visualization version   GIF version

Theorem numdensq 15393
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
numdensq (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))

Proof of Theorem numdensq
StepHypRef Expression
1 qnumdencoprm 15384 . . . 4 (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
21oveq1d 6625 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2))
3 qnumcl 15379 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
4 qdencl 15380 . . . . 5 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
54nnzd 11432 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ)
6 zgcdsq 15392 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
73, 5, 6syl2anc 692 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
8 sq1 12905 . . . 4 (1↑2) = 1
98a1i 11 . . 3 (𝐴 ∈ ℚ → (1↑2) = 1)
102, 7, 93eqtr3d 2663 . 2 (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1)
11 qeqnumdivden 15385 . . . 4 (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1211oveq1d 6625 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2))
133zcnd 11434 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ)
144nncnd 10987 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ)
154nnne0d 11016 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0)
1613, 14, 15sqdivd 12968 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
1712, 16eqtrd 2655 . 2 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
18 qsqcl 12882 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 zsqcl 12881 . . . 4 ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ)
203, 19syl 17 . . 3 (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ)
214nnsqcld 12976 . . 3 (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ)
22 qnumdenbi 15383 . . 3 (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2318, 20, 21, 22syl3anc 1323 . 2 (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2410, 17, 23mpbi2and 955 1 (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  1c1 9888   / cdiv 10635  cn 10971  2c2 11021  cz 11328  cq 11739  cexp 12807   gcd cgcd 15147  numercnumer 15372  denomcdenom 15373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148  df-numer 15374  df-denom 15375
This theorem is referenced by:  numsq  15394  densq  15395
  Copyright terms: Public domain W3C validator