![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nv0lid | Structured version Visualization version GIF version |
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nv0id.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nv0id.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nv0lid | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nv0id.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | nv0id.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | 0vfval 27589 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
4 | 3 | oveq1d 6705 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
6 | 1 | nvgrp 27600 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
7 | nv0id.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 1 | bafval 27587 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
9 | eqid 2651 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
10 | 8, 9 | grpolid 27498 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
11 | 6, 10 | sylan 487 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
12 | 5, 11 | eqtrd 2685 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 GrpOpcgr 27471 GIdcgi 27472 NrmCVeccnv 27567 +𝑣 cpv 27568 BaseSetcba 27569 0veccn0v 27571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-1st 7210 df-2nd 7211 df-grpo 27475 df-gid 27476 df-ablo 27527 df-vc 27542 df-nv 27575 df-va 27578 df-ba 27579 df-sm 27580 df-0v 27581 df-nmcv 27583 |
This theorem is referenced by: nvpncan2 27636 nvmeq0 27641 imsmetlem 27673 ipdirilem 27812 |
Copyright terms: Public domain | W3C validator |