MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvablo Structured version   Visualization version   GIF version

Theorem nvablo 28395
Description: The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvablo (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)

Proof of Theorem nvablo
StepHypRef Expression
1 eqid 2823 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 28394 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvabl.1 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 28382 . . 3 𝐺 = (1st ‘(1st𝑈))
54vcablo 28348 . 2 ((1st𝑈) ∈ CVecOLD𝐺 ∈ AbelOp)
62, 5syl 17 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6357  1st c1st 7689  AbelOpcablo 28323  CVecOLDcvc 28337  NrmCVeccnv 28363   +𝑣 cpv 28364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-1st 7691  df-2nd 7692  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-nmcv 28379
This theorem is referenced by:  nvgrp  28396  nvcom  28400  nvadd32  28402  nvadd4  28404  nvnnncan1  28426  nvaddsub  28434
  Copyright terms: Public domain W3C validator