MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvabs Structured version   Visualization version   GIF version

Theorem nvabs 26706
Description: Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvabs.1 𝑋 = (BaseSet‘𝑈)
nvabs.2 𝐺 = ( +𝑣𝑈)
nvabs.4 𝑆 = ( ·𝑠OLD𝑈)
nvabs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvabs ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))

Proof of Theorem nvabs
StepHypRef Expression
1 nvabs.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvabs.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 nvabs.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 nvabs.6 . . . . 5 𝑁 = (normCV𝑈)
51, 2, 3, 4nvdif 26698 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
65negeqd 10126 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) = -(𝑁‘(𝐵𝐺(-1𝑆𝐴))))
71, 4nvcl 26692 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
873adant2 1072 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
91, 4nvcl 26692 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1093adant3 1073 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℝ)
11 simp1 1053 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
12 neg1cn 10971 . . . . . . . . . 10 -1 ∈ ℂ
131, 3nvscl 26651 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1412, 13mp3an2 1403 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
15143adant2 1072 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
161, 2nvgcl 26643 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
1715, 16syld3an3 1362 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
18173com23 1262 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
191, 4nvcl 26692 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2011, 18, 19syl2anc 690 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2120renegcld 10308 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
221, 2nvcom 26644 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
2318, 22syld3an3 1362 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
24 simprr 791 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2514adantrr 748 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (-1𝑆𝐴) ∈ 𝑋)
26 simprl 789 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2724, 25, 263jca 1234 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋))
281, 2nvass 26645 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
2927, 28syldan 485 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
30293impb 1251 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
31 eqid 2609 . . . . . . . . . . . 12 (0vec𝑈) = (0vec𝑈)
321, 2, 3, 31nvlinv 26679 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
33323adant3 1073 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
3433oveq2d 6543 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)) = (𝐵𝐺(0vec𝑈)))
351, 2, 31nv0rid 26660 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
36353adant2 1072 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
3730, 34, 363eqtrd 2647 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = 𝐵)
3823, 37eqtrd 2643 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = 𝐵)
3938fveq2d 6092 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) = (𝑁𝐵))
401, 2, 4nvtri 26703 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4118, 40syld3an3 1362 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4239, 41eqbrtrrd 4601 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4310recnd 9924 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℂ)
4420recnd 9924 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℂ)
4543, 44subnegd 10250 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))) = ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4642, 45breqtrrd 4605 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
478, 10, 21, 46lesubd 10480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
486, 47eqbrtrd 4599 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
49 simp2 1054 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
501, 3nvscl 26651 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
5112, 50mp3an2 1403 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
52513adant2 1072 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
53 simp3 1055 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
541, 2nvass 26645 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
5511, 49, 52, 53, 54syl13anc 1319 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
561, 2, 3, 31nvlinv 26679 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
57563adant2 1072 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
5857oveq2d 6543 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)) = (𝐴𝐺(0vec𝑈)))
591, 2, 31nv0rid 26660 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
60593adant3 1073 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
6155, 58, 603eqtrd 2647 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = 𝐴)
6261fveq2d 6092 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) = (𝑁𝐴))
631, 2nvgcl 26643 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6452, 63syld3an3 1362 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
651, 2, 4nvtri 26703 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6664, 65syld3an2 1364 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6762, 66eqbrtrrd 4601 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
681, 4nvcl 26692 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
6911, 64, 68syl2anc 690 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
7010, 8, 69lesubaddd 10473 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵))))
7167, 70mpbird 245 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
7210, 8resubcld 10309 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℝ)
7372, 69absled 13963 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (-(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)) ∧ ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))))
7448, 71, 73mpbir2and 958 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  1c1 9793   + caddc 9795  cle 9931  cmin 10117  -cneg 10118  abscabs 13768  NrmCVeccnv 26607   +𝑣 cpv 26608  BaseSetcba 26609   ·𝑠OLD cns 26610  0veccn0v 26611  normCVcnmcv 26613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-grpo 26497  df-gid 26498  df-ginv 26499  df-ablo 26552  df-vc 26567  df-nv 26615  df-va 26618  df-ba 26619  df-sm 26620  df-0v 26621  df-nmcv 26623
This theorem is referenced by:  nmcvcn  26735
  Copyright terms: Public domain W3C validator