MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdif Structured version   Visualization version   GIF version

Theorem nvdif 28370
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvdif ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))

Proof of Theorem nvdif
StepHypRef Expression
1 simp1 1128 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 neg1cn 11739 . . . . . 6 -1 ∈ ℂ
32a1i 11 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ ℂ)
4 simp3 1130 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
5 nvdif.1 . . . . . . . 8 𝑋 = (BaseSet‘𝑈)
6 nvdif.4 . . . . . . . 8 𝑆 = ( ·𝑠OLD𝑈)
75, 6nvscl 28330 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
82, 7mp3an2 1440 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
983adant3 1124 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐴) ∈ 𝑋)
10 nvdif.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
115, 10, 6nvdi 28334 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1 ∈ ℂ ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋)) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
121, 3, 4, 9, 11syl13anc 1364 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))))
135, 6nvnegneg 28353 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
14133adant3 1124 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
1514oveq2d 7161 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺(-1𝑆(-1𝑆𝐴))) = ((-1𝑆𝐵)𝐺𝐴))
165, 6nvscl 28330 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
172, 16mp3an2 1440 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
18173adant2 1123 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
19 simp2 1129 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
205, 10nvcom 28325 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐵) ∈ 𝑋𝐴𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
211, 18, 19, 20syl3anc 1363 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐴) = (𝐴𝐺(-1𝑆𝐵)))
2212, 15, 213eqtrd 2857 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆(𝐵𝐺(-1𝑆𝐴))) = (𝐴𝐺(-1𝑆𝐵)))
2322fveq2d 6667 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
245, 10nvgcl 28324 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
251, 4, 9, 24syl3anc 1363 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
26 nvdif.6 . . . 4 𝑁 = (normCV𝑈)
275, 6, 26nvm1 28369 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
281, 25, 27syl2anc 584 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-1𝑆(𝐵𝐺(-1𝑆𝐴)))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
2923, 28eqtr3d 2855 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523  1c1 10526  -cneg 10859  NrmCVeccnv 28288   +𝑣 cpv 28289  BaseSetcba 28290   ·𝑠OLD cns 28291  normCVcnmcv 28294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-grpo 28197  df-gid 28198  df-ginv 28199  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-nmcv 28304
This theorem is referenced by:  nvabs  28376  imsmetlem  28394  dipcj  28418
  Copyright terms: Public domain W3C validator