MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvinv Structured version   Visualization version   GIF version

Theorem nvinv 28419
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvinv.1 𝑋 = (BaseSet‘𝑈)
nvinv.2 𝐺 = ( +𝑣𝑈)
nvinv.4 𝑆 = ( ·𝑠OLD𝑈)
nvinv.5 𝑀 = (inv‘𝐺)
Assertion
Ref Expression
nvinv ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))

Proof of Theorem nvinv
StepHypRef Expression
1 eqid 2824 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 28395 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvinv.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 28383 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvinv.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 28385 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvinv.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 28384 . . 3 𝑋 = ran 𝐺
9 nvinv.5 . . 3 𝑀 = (inv‘𝐺)
104, 6, 8, 9vcm 28356 . 2 (((1st𝑈) ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
112, 10sylan 582 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  1st c1st 7690  1c1 10541  -cneg 10874  invcgn 28271  CVecOLDcvc 28338  NrmCVeccnv 28364   +𝑣 cpv 28365  BaseSetcba 28366   ·𝑠OLD cns 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-1st 7692  df-2nd 7693  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683  df-sub 10875  df-neg 10876  df-grpo 28273  df-gid 28274  df-ginv 28275  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-nmcv 28380
This theorem is referenced by:  nvinvfval  28420  nvmval  28422  nvmfval  28424  nvnegneg  28429  nvrinv  28431  nvlinv  28432
  Copyright terms: Public domain W3C validator