MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmtri Structured version   Visualization version   GIF version

Theorem nvmtri 28451
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmtri.1 𝑋 = (BaseSet‘𝑈)
nvmtri.3 𝑀 = ( −𝑣𝑈)
nvmtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvmtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvmtri
StepHypRef Expression
1 neg1cn 11754 . . . . 5 -1 ∈ ℂ
2 nvmtri.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2824 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
42, 3nvscl 28406 . . . . 5 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
51, 4mp3an2 1445 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
653adant2 1127 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋)
7 eqid 2824 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
8 nvmtri.6 . . . 4 𝑁 = (normCV𝑈)
92, 7, 8nvtri 28450 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1( ·𝑠OLD𝑈)𝐵) ∈ 𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐵))))
106, 9syld3an3 1405 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))) ≤ ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐵))))
11 nvmtri.3 . . . 4 𝑀 = ( −𝑣𝑈)
122, 7, 3, 11nvmval 28422 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵)))
1312fveq2d 6677 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐵))))
142, 3, 8nvs 28443 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)) = ((abs‘-1) · (𝑁𝐵)))
151, 14mp3an2 1445 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)) = ((abs‘-1) · (𝑁𝐵)))
16 ax-1cn 10598 . . . . . . . . 9 1 ∈ ℂ
1716absnegi 14763 . . . . . . . 8 (abs‘-1) = (abs‘1)
18 abs1 14660 . . . . . . . 8 (abs‘1) = 1
1917, 18eqtri 2847 . . . . . . 7 (abs‘-1) = 1
2019oveq1i 7169 . . . . . 6 ((abs‘-1) · (𝑁𝐵)) = (1 · (𝑁𝐵))
212, 8nvcl 28441 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
2221recnd 10672 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℂ)
2322mulid2d 10662 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1 · (𝑁𝐵)) = (𝑁𝐵))
2420, 23syl5eq 2871 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((abs‘-1) · (𝑁𝐵)) = (𝑁𝐵))
2515, 24eqtr2d 2860 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) = (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)))
26253adant2 1127 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) = (𝑁‘(-1( ·𝑠OLD𝑈)𝐵)))
2726oveq2d 7175 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) + (𝑁𝐵)) = ((𝑁𝐴) + (𝑁‘(-1( ·𝑠OLD𝑈)𝐵))))
2810, 13, 273brtr4d 5101 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝑀𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  1c1 10541   + caddc 10543   · cmul 10545  cle 10679  -cneg 10874  abscabs 14596  NrmCVeccnv 28364   +𝑣 cpv 28365  BaseSetcba 28366   ·𝑠OLD cns 28367  𝑣 cnsb 28369  normCVcnmcv 28370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-grpo 28273  df-gid 28274  df-ginv 28275  df-gdiv 28276  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-vs 28379  df-nmcv 28380
This theorem is referenced by:  ubthlem2  28651
  Copyright terms: Public domain W3C validator