MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmul0or Structured version   Visualization version   GIF version

Theorem nvmul0or 27633
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmul0or.1 𝑋 = (BaseSet‘𝑈)
nvmul0or.4 𝑆 = ( ·𝑠OLD𝑈)
nvmul0or.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvmul0or ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍)))

Proof of Theorem nvmul0or
StepHypRef Expression
1 df-ne 2824 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 6698 . . . . . . . 8 ((𝐴𝑆𝐵) = 𝑍 → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍))
32ad2antlr 763 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍))
4 recid2 10738 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 6705 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵))
653ad2antl2 1244 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵))
7 simpl1 1084 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝑈 ∈ NrmCVec)
8 reccl 10730 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
983ad2antl2 1244 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
10 simpl2 1085 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
11 simpl3 1086 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝐵𝑋)
12 nvmul0or.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
13 nvmul0or.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1412, 13nvsass 27611 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵)))
157, 9, 10, 11, 14syl13anc 1368 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵)))
1612, 13nvsid 27610 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
17163adant2 1100 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
1817adantr 480 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (1𝑆𝐵) = 𝐵)
196, 15, 183eqtr3d 2693 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵)
2019adantlr 751 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵)
21 nvmul0or.6 . . . . . . . . . . . 12 𝑍 = (0vec𝑈)
2213, 21nvsz 27621 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (1 / 𝐴) ∈ ℂ) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
238, 22sylan2 490 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
2423anassrs 681 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
25243adantl3 1239 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
2625adantlr 751 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
273, 20, 263eqtr3d 2693 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → 𝐵 = 𝑍)
2827ex 449 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 ≠ 0 → 𝐵 = 𝑍))
291, 28syl5bir 233 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (¬ 𝐴 = 0 → 𝐵 = 𝑍))
3029orrd 392 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 = 0 ∨ 𝐵 = 𝑍))
3130ex 449 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 → (𝐴 = 0 ∨ 𝐵 = 𝑍)))
3212, 13, 21nv0 27620 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (0𝑆𝐵) = 𝑍)
33 oveq1 6697 . . . . . 6 (𝐴 = 0 → (𝐴𝑆𝐵) = (0𝑆𝐵))
3433eqeq1d 2653 . . . . 5 (𝐴 = 0 → ((𝐴𝑆𝐵) = 𝑍 ↔ (0𝑆𝐵) = 𝑍))
3532, 34syl5ibrcom 237 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍))
36353adant2 1100 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍))
3713, 21nvsz 27621 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
38 oveq2 6698 . . . . . 6 (𝐵 = 𝑍 → (𝐴𝑆𝐵) = (𝐴𝑆𝑍))
3938eqeq1d 2653 . . . . 5 (𝐵 = 𝑍 → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴𝑆𝑍) = 𝑍))
4037, 39syl5ibrcom 237 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍))
41403adant3 1101 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍))
4236, 41jaod 394 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴 = 0 ∨ 𝐵 = 𝑍) → (𝐴𝑆𝐵) = 𝑍))
4331, 42impbid 202 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   · cmul 9979   / cdiv 10722  NrmCVeccnv 27567  BaseSetcba 27569   ·𝑠OLD cns 27570  0veccn0v 27571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583
This theorem is referenced by:  nmlno0lem  27776
  Copyright terms: Public domain W3C validator