Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmval2 Structured version   Visualization version   GIF version

Theorem nvmval2 27386
 Description: Value of vector subtraction on a normed complex vector space. (Contributed by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmval2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = ((-1𝑆𝐵)𝐺𝐴))

Proof of Theorem nvmval2
StepHypRef Expression
1 nvmval.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 nvmval.2 . . 3 𝐺 = ( +𝑣𝑈)
3 nvmval.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
4 nvmval.3 . . 3 𝑀 = ( −𝑣𝑈)
51, 2, 3, 4nvmval 27385 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = (𝐴𝐺(-1𝑆𝐵)))
6 neg1cn 11084 . . . . 5 -1 ∈ ℂ
71, 3nvscl 27369 . . . . 5 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
86, 7mp3an2 1409 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
983adant2 1078 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
101, 2nvcom 27364 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) = ((-1𝑆𝐵)𝐺𝐴))
119, 10syld3an3 1368 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) = ((-1𝑆𝐵)𝐺𝐴))
125, 11eqtrd 2655 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑀𝐵) = ((-1𝑆𝐵)𝐺𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ‘cfv 5857  (class class class)co 6615  ℂcc 9894  1c1 9897  -cneg 10227  NrmCVeccnv 27327   +𝑣 cpv 27328  BaseSetcba 27329   ·𝑠OLD cns 27330   −𝑣 cnsb 27332 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-ltxr 10039  df-sub 10228  df-neg 10229  df-grpo 27235  df-gid 27236  df-ginv 27237  df-gdiv 27238  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-vs 27342  df-nmcv 27343 This theorem is referenced by:  lnosub  27502
 Copyright terms: Public domain W3C validator