MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvop2 Structured version   Visualization version   GIF version

Theorem nvop2 27309
Description: A normed complex vector space is an ordered pair of a vector space and a norm operation. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvop2.1 𝑊 = (1st𝑈)
nvop2.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvop2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩)

Proof of Theorem nvop2
StepHypRef Expression
1 nvrel 27303 . . 3 Rel NrmCVec
2 1st2nd 7159 . . 3 ((Rel NrmCVec ∧ 𝑈 ∈ NrmCVec) → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
31, 2mpan 705 . 2 (𝑈 ∈ NrmCVec → 𝑈 = ⟨(1st𝑈), (2nd𝑈)⟩)
4 nvop2.1 . . 3 𝑊 = (1st𝑈)
5 nvop2.6 . . . 4 𝑁 = (normCV𝑈)
65nmcvfval 27308 . . 3 𝑁 = (2nd𝑈)
74, 6opeq12i 4375 . 2 𝑊, 𝑁⟩ = ⟨(1st𝑈), (2nd𝑈)⟩
83, 7syl6eqr 2673 1 (𝑈 ∈ NrmCVec → 𝑈 = ⟨𝑊, 𝑁⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cop 4154  Rel wrel 5079  cfv 5847  1st c1st 7111  2nd c2nd 7112  NrmCVeccnv 27285  normCVcnmcv 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fv 5855  df-oprab 6608  df-1st 7113  df-2nd 7114  df-nv 27293  df-nmcv 27301
This theorem is referenced by:  nvvop  27310  nvi  27315
  Copyright terms: Public domain W3C validator