MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvpi Structured version   Visualization version   GIF version

Theorem nvpi 27650
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdif.1 𝑋 = (BaseSet‘𝑈)
nvdif.2 𝐺 = ( +𝑣𝑈)
nvdif.4 𝑆 = ( ·𝑠OLD𝑈)
nvdif.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvpi ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))

Proof of Theorem nvpi
StepHypRef Expression
1 simp1 1081 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
2 ax-icn 10033 . . . . . . . 8 i ∈ ℂ
3 nvdif.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
4 nvdif.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
53, 4nvscl 27609 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
62, 5mp3an2 1452 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
763adant2 1100 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (i𝑆𝐵) ∈ 𝑋)
8 nvdif.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
93, 8nvgcl 27603 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
107, 9syld3an3 1411 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋)
11 nvdif.6 . . . . . 6 𝑁 = (normCV𝑈)
123, 11nvcl 27644 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
131, 10, 12syl2anc 694 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℝ)
1413recnd 10106 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) ∈ ℂ)
1514mulid2d 10096 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐴𝐺(i𝑆𝐵))))
162absnegi 14183 . . . . 5 (abs‘-i) = (abs‘i)
17 absi 14070 . . . . 5 (abs‘i) = 1
1816, 17eqtri 2673 . . . 4 (abs‘-i) = 1
1918oveq1i 6700 . . 3 ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵))))
20 negicn 10320 . . . . . 6 -i ∈ ℂ
213, 4, 11nvs 27646 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
2220, 21mp3an2 1452 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(i𝑆𝐵)) ∈ 𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
231, 10, 22syl2anc 694 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))))
24 simp2 1082 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
253, 8, 4nvdi 27613 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
2620, 25mp3anr1 1461 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (i𝑆𝐵) ∈ 𝑋)) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
271, 24, 7, 26syl12anc 1364 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))))
282, 2mulneg1i 10514 . . . . . . . . . . 11 (-i · i) = -(i · i)
29 ixi 10694 . . . . . . . . . . . . 13 (i · i) = -1
3029negeqi 10312 . . . . . . . . . . . 12 -(i · i) = --1
31 negneg1e1 11166 . . . . . . . . . . . 12 --1 = 1
3230, 31eqtri 2673 . . . . . . . . . . 11 -(i · i) = 1
3328, 32eqtri 2673 . . . . . . . . . 10 (-i · i) = 1
3433oveq1i 6700 . . . . . . . . 9 ((-i · i)𝑆𝐵) = (1𝑆𝐵)
353, 4nvsass 27611 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
3620, 35mp3anr1 1461 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐵𝑋)) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
372, 36mpanr1 719 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-i · i)𝑆𝐵) = (-i𝑆(i𝑆𝐵)))
383, 4nvsid 27610 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
3934, 37, 383eqtr3a 2709 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵)
40393adant2 1100 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(i𝑆𝐵)) = 𝐵)
4140oveq2d 6706 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺(-i𝑆(i𝑆𝐵))) = ((-i𝑆𝐴)𝐺𝐵))
423, 4nvscl 27609 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐴𝑋) → (-i𝑆𝐴) ∈ 𝑋)
4320, 42mp3an2 1452 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i𝑆𝐴) ∈ 𝑋)
44433adant3 1101 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆𝐴) ∈ 𝑋)
453, 8nvcom 27604 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (-i𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴)))
4644, 45syld3an2 1413 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-i𝑆𝐴)𝐺𝐵) = (𝐵𝐺(-i𝑆𝐴)))
4727, 41, 463eqtrd 2689 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-i𝑆(𝐴𝐺(i𝑆𝐵))) = (𝐵𝐺(-i𝑆𝐴)))
4847fveq2d 6233 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(-i𝑆(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
4923, 48eqtr3d 2687 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘-i) · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
5019, 49syl5eqr 2699 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (1 · (𝑁‘(𝐴𝐺(i𝑆𝐵)))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
5115, 50eqtr3d 2687 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(i𝑆𝐵))) = (𝑁‘(𝐵𝐺(-i𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  1c1 9975  ici 9976   · cmul 9979  -cneg 10305  abscabs 14018  NrmCVeccnv 27567   +𝑣 cpv 27568  BaseSetcba 27569   ·𝑠OLD cns 27570  normCVcnmcv 27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583
This theorem is referenced by:  dipcj  27697
  Copyright terms: Public domain W3C validator