MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvtri Structured version   Visualization version   GIF version

Theorem nvtri 27371
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvtri.1 𝑋 = (BaseSet‘𝑈)
nvtri.2 𝐺 = ( +𝑣𝑈)
nvtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvtri.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 nvtri.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
3 eqid 2621 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
43smfval 27306 . . . . . . . 8 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
54eqcomi 2630 . . . . . . 7 (2nd ‘(1st𝑈)) = ( ·𝑠OLD𝑈)
6 eqid 2621 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 nvtri.6 . . . . . . 7 𝑁 = (normCV𝑈)
81, 2, 5, 6, 7nvi 27315 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨𝐺, (2nd ‘(1st𝑈))⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
98simp3d 1073 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
10 simp3 1061 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
1110ralimi 2947 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
129, 11syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 oveq1 6611 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1413fveq2d 6152 . . . . . 6 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
15 fveq2 6148 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1615oveq1d 6619 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝑦)))
1714, 16breq12d 4626 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦))))
18 oveq2 6612 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1918fveq2d 6152 . . . . . 6 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
20 fveq2 6148 . . . . . . 7 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
2120oveq2d 6620 . . . . . 6 (𝑦 = 𝐵 → ((𝑁𝐴) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝐵)))
2219, 21breq12d 4626 . . . . 5 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2317, 22rspc2v 3306 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2412, 23syl5 34 . . 3 ((𝐴𝑋𝐵𝑋) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
25243impia 1258 . 2 ((𝐴𝑋𝐵𝑋𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
26253comr 1270 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cop 4154   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  cc 9878  cr 9879  0cc0 9880   + caddc 9883   · cmul 9885  cle 10019  abscabs 13908  CVecOLDcvc 27259  NrmCVeccnv 27285   +𝑣 cpv 27286  BaseSetcba 27287   ·𝑠OLD cns 27288  0veccn0v 27289  normCVcnmcv 27291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-1st 7113  df-2nd 7114  df-vc 27260  df-nv 27293  df-va 27296  df-ba 27297  df-sm 27298  df-0v 27299  df-nmcv 27301
This theorem is referenced by:  nvmtri  27372  nvabs  27373  nvge0  27374  imsmetlem  27391  vacn  27395
  Copyright terms: Public domain W3C validator