Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvvc Structured version   Visualization version   GIF version

Theorem nvvc 27331
 Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvvc.1 𝑊 = (1st𝑈)
Assertion
Ref Expression
nvvc (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)

Proof of Theorem nvvc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvvc.1 . . 3 𝑊 = (1st𝑈)
2 eqid 2621 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2621 . . 3 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
41, 2, 3nvvop 27325 . 2 (𝑈 ∈ NrmCVec → 𝑊 = ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩)
5 eqid 2621 . . . 4 (BaseSet‘𝑈) = (BaseSet‘𝑈)
6 eqid 2621 . . . 4 (0vec𝑈) = (0vec𝑈)
7 eqid 2621 . . . 4 (normCV𝑈) = (normCV𝑈)
85, 2, 3, 6, 7nvi 27330 . . 3 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD ∧ (normCV𝑈):(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)((((normCV𝑈)‘𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ ((normCV𝑈)‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · ((normCV𝑈)‘𝑥)) ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((normCV𝑈)‘(𝑥( +𝑣𝑈)𝑦)) ≤ (((normCV𝑈)‘𝑥) + ((normCV𝑈)‘𝑦)))))
98simp1d 1071 . 2 (𝑈 ∈ NrmCVec → ⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD)
104, 9eqeltrd 2698 1 (𝑈 ∈ NrmCVec → 𝑊 ∈ CVecOLD)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ⟨cop 4156   class class class wbr 4615  ⟶wf 5845  ‘cfv 5849  (class class class)co 6607  1st c1st 7114  ℂcc 9881  ℝcr 9882  0cc0 9883   + caddc 9886   · cmul 9888   ≤ cle 10022  abscabs 13911  CVecOLDcvc 27274  NrmCVeccnv 27300   +𝑣 cpv 27301  BaseSetcba 27302   ·𝑠OLD cns 27303  0veccn0v 27304  normCVcnmcv 27306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-1st 7116  df-2nd 7117  df-vc 27275  df-nv 27308  df-va 27311  df-ba 27312  df-sm 27313  df-0v 27314  df-nmcv 27316 This theorem is referenced by:  nvablo  27332  nvsf  27335  nvscl  27342  nvsid  27343  nvsass  27344  nvdi  27346  nvdir  27347  nv2  27348  nv0  27353  nvsz  27354  nvinv  27355  phop  27534  ip0i  27541  ipdirilem  27545  hlvc  27610
 Copyright terms: Public domain W3C validator