MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvz Structured version   Visualization version   GIF version

Theorem nvz 27373
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvz.1 𝑋 = (BaseSet‘𝑈)
nvz.5 𝑍 = (0vec𝑈)
nvz.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvz ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))

Proof of Theorem nvz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvz.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
2 eqid 2621 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2621 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 nvz.5 . . . . . 6 𝑍 = (0vec𝑈)
5 nvz.6 . . . . . 6 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 27318 . . . . 5 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), ( ·𝑠OLD𝑈)⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1073 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp1 1059 . . . . 5 ((((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
98ralimi 2947 . . . 4 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD𝑈)𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
10 fveq2 6148 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1110eqeq1d 2623 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) = 0 ↔ (𝑁𝐴) = 0))
12 eqeq1 2625 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 𝑍𝐴 = 𝑍))
1311, 12imbi12d 334 . . . . 5 (𝑥 = 𝐴 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1413rspccv 3292 . . . 4 (∀𝑥𝑋 ((𝑁𝑥) = 0 → 𝑥 = 𝑍) → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
157, 9, 143syl 18 . . 3 (𝑈 ∈ NrmCVec → (𝐴𝑋 → ((𝑁𝐴) = 0 → 𝐴 = 𝑍)))
1615imp 445 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 → 𝐴 = 𝑍))
17 fveq2 6148 . . . . 5 (𝐴 = 𝑍 → (𝑁𝐴) = (𝑁𝑍))
184, 5nvz0 27372 . . . . 5 (𝑈 ∈ NrmCVec → (𝑁𝑍) = 0)
1917, 18sylan9eqr 2677 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁𝐴) = 0)
2019ex 450 . . 3 (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2120adantr 481 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴 = 𝑍 → (𝑁𝐴) = 0))
2216, 21impbid 202 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cop 4154   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   + caddc 9883   · cmul 9885  cle 10019  abscabs 13908  CVecOLDcvc 27262  NrmCVeccnv 27288   +𝑣 cpv 27289  BaseSetcba 27290   ·𝑠OLD cns 27291  0veccn0v 27292  normCVcnmcv 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-grpo 27196  df-gid 27197  df-ginv 27198  df-ablo 27248  df-vc 27263  df-nv 27296  df-va 27299  df-ba 27300  df-sm 27301  df-0v 27302  df-nmcv 27304
This theorem is referenced by:  nvgt0  27378  nv1  27379  imsmetlem  27394  ipz  27423  nmlno0lem  27497  nmblolbii  27503  blocnilem  27508  siii  27557  hlipgt0  27619
  Copyright terms: Public domain W3C validator