Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nznngen Structured version   Visualization version   GIF version

Theorem nznngen 40638
Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypothesis
Ref Expression
nznngen.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nznngen (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ‘(abs‘𝑁)))

Proof of Theorem nznngen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldvds 40637 . . . . . . . 8 Rel ∥
2 relimasn 5945 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
31, 2ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
43ineq1i 4183 . . . . . 6 (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥𝑁𝑥} ∩ ℕ)
5 dfrab2 4277 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑁𝑥} = ({𝑥𝑁𝑥} ∩ ℕ)
64, 5eqtr4i 2845 . . . . 5 (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁𝑥}
76eleq2i 2902 . . . 4 (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥})
8 rabid 3377 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁𝑥))
9 nznngen.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
10 nnz 11996 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
11 absdvdsb 15620 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (abs‘𝑁) ∥ 𝑥))
129, 10, 11syl2an 597 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑁𝑥 ↔ (abs‘𝑁) ∥ 𝑥))
13 zabscl 14665 . . . . . . . . . 10 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
149, 13syl 17 . . . . . . . . 9 (𝜑 → (abs‘𝑁) ∈ ℤ)
15 dvdsle 15652 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥))
1614, 15sylan 582 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥))
1712, 16sylbid 242 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑁𝑥 → (abs‘𝑁) ≤ 𝑥))
1817impr 457 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁𝑥)) → (abs‘𝑁) ≤ 𝑥)
198, 18sylan2b 595 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → (abs‘𝑁) ≤ 𝑥)
208simplbi 500 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} → 𝑥 ∈ ℕ)
2120nnzd 12078 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} → 𝑥 ∈ ℤ)
22 eluz 12249 . . . . . 6 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥))
2314, 21, 22syl2an 597 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → (𝑥 ∈ (ℤ‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥))
2419, 23mpbird 259 . . . 4 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → 𝑥 ∈ (ℤ‘(abs‘𝑁)))
257, 24sylan2b 595 . . 3 ((𝜑𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ‘(abs‘𝑁)))
2625ex 415 . 2 (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ‘(abs‘𝑁))))
2726ssrdv 3971 1 (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ‘(abs‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  {cab 2797  {crab 3140  cin 3933  wss 3934  {csn 4559   class class class wbr 5057  cima 5551  Rel wrel 5553  cfv 6348  cle 10668  cn 11630  cz 11973  cuz 12235  abscabs 14585  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator