Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzss Structured version   Visualization version   GIF version

Theorem nzss 37341
Description: The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzss.m (𝜑𝑀 ∈ ℤ)
nzss.n (𝜑𝑁𝑉)
Assertion
Ref Expression
nzss (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))

Proof of Theorem nzss
Dummy variables 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nzss.m . 2 (𝜑𝑀 ∈ ℤ)
2 nzss.n . 2 (𝜑𝑁𝑉)
3 iddvds 14779 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑀)
4 breq2 4581 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝑀𝑥𝑀𝑀))
54elabg 3319 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 ∈ {𝑥𝑀𝑥} ↔ 𝑀𝑀))
63, 5mpbird 245 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑥𝑀𝑥})
7 reldvds 37339 . . . . . . . . 9 Rel ∥
8 relimasn 5394 . . . . . . . . 9 (Rel ∥ → ( ∥ “ {𝑀}) = {𝑥𝑀𝑥})
97, 8ax-mp 5 . . . . . . . 8 ( ∥ “ {𝑀}) = {𝑥𝑀𝑥}
106, 9syl6eleqr 2698 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑀}))
11 ssel 3561 . . . . . . 7 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ( ∥ “ {𝑀}) → 𝑀 ∈ ( ∥ “ {𝑁})))
1210, 11syl5 33 . . . . . 6 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑀 ∈ ( ∥ “ {𝑁})))
13 breq2 4581 . . . . . . 7 (𝑥 = 𝑀 → (𝑁𝑥𝑁𝑀))
14 relimasn 5394 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
157, 14ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1613, 15elab2g 3321 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1712, 16mpbidi 229 . . . . 5 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → (𝑀 ∈ ℤ → 𝑁𝑀))
1817com12 32 . . . 4 (𝑀 ∈ ℤ → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
1918adantr 479 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) → 𝑁𝑀))
20 ssid 3586 . . . . . . 7 {0} ⊆ {0}
21 simpl 471 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → 𝑁𝑀)
22 breq1 4580 . . . . . . . . . . . . . 14 (𝑁 = 0 → (𝑁𝑀 ↔ 0 ∥ 𝑀))
23 dvdszrcl 14772 . . . . . . . . . . . . . . . 16 (𝑁𝑀 → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2423simprd 477 . . . . . . . . . . . . . . 15 (𝑁𝑀𝑀 ∈ ℤ)
25 0dvds 14786 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (0 ∥ 𝑀𝑀 = 0))
2624, 25syl 17 . . . . . . . . . . . . . 14 (𝑁𝑀 → (0 ∥ 𝑀𝑀 = 0))
2722, 26sylan9bbr 732 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 = 0) → (𝑁𝑀𝑀 = 0))
2821, 27mpbid 220 . . . . . . . . . . . 12 ((𝑁𝑀𝑁 = 0) → 𝑀 = 0)
2928breq1d 4587 . . . . . . . . . . 11 ((𝑁𝑀𝑁 = 0) → (𝑀𝑥 ↔ 0 ∥ 𝑥))
30 0dvds 14786 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (0 ∥ 𝑥𝑥 = 0))
3129, 30sylan9bb 731 . . . . . . . . . 10 (((𝑁𝑀𝑁 = 0) ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 = 0))
3231rabbidva 3162 . . . . . . . . 9 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0})
33 0z 11221 . . . . . . . . . 10 0 ∈ ℤ
34 rabsn 4199 . . . . . . . . . 10 (0 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0})
3533, 34ax-mp 5 . . . . . . . . 9 {𝑥 ∈ ℤ ∣ 𝑥 = 0} = {0}
3632, 35syl6eq 2659 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {0})
37 breq1 4580 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁𝑥 ↔ 0 ∥ 𝑥))
3837rabbidv 3163 . . . . . . . . . 10 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥})
3930rabbiia 3160 . . . . . . . . . . 11 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {𝑥 ∈ ℤ ∣ 𝑥 = 0}
4039, 35eqtri 2631 . . . . . . . . . 10 {𝑥 ∈ ℤ ∣ 0 ∥ 𝑥} = {0}
4138, 40syl6eq 2659 . . . . . . . . 9 (𝑁 = 0 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4241adantl 480 . . . . . . . 8 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {0})
4336, 42sseq12d 3596 . . . . . . 7 ((𝑁𝑀𝑁 = 0) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {0} ⊆ {0}))
4420, 43mpbiri 246 . . . . . 6 ((𝑁𝑀𝑁 = 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
4524zcnd 11315 . . . . . . . . . . . 12 (𝑁𝑀𝑀 ∈ ℂ)
4645ad2antrr 757 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑀 ∈ ℂ)
4723simpld 473 . . . . . . . . . . . . 13 (𝑁𝑀𝑁 ∈ ℤ)
4847zcnd 11315 . . . . . . . . . . . 12 (𝑁𝑀𝑁 ∈ ℂ)
4948ad2antrr 757 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
50 simplr 787 . . . . . . . . . . 11 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑁 ≠ 0)
5146, 49, 50divcan2d 10652 . . . . . . . . . 10 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
5251breq1d 4587 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑀𝑛))
5347adantr 479 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → 𝑁 ∈ ℤ)
54 dvdsval2 14770 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℤ))
5554biimpd 217 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
56553com23 1262 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
57563expa 1256 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5823, 57sylan 486 . . . . . . . . . . . . 13 ((𝑁𝑀𝑁 ≠ 0) → (𝑁𝑀 → (𝑀 / 𝑁) ∈ ℤ))
5958imp 443 . . . . . . . . . . . 12 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
6059anabss1 850 . . . . . . . . . . 11 ((𝑁𝑀𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℤ)
6153, 60jca 552 . . . . . . . . . 10 ((𝑁𝑀𝑁 ≠ 0) → (𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ))
62 muldvds1 14790 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
63623expa 1256 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6461, 63sylan 486 . . . . . . . . 9 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((𝑁 · (𝑀 / 𝑁)) ∥ 𝑛𝑁𝑛))
6552, 64sylbird 248 . . . . . . . 8 (((𝑁𝑀𝑁 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑁𝑛))
6665ss2rabdv 3645 . . . . . . 7 ((𝑁𝑀𝑁 ≠ 0) → {𝑛 ∈ ℤ ∣ 𝑀𝑛} ⊆ {𝑛 ∈ ℤ ∣ 𝑁𝑛})
67 breq2 4581 . . . . . . . 8 (𝑛 = 𝑥 → (𝑀𝑛𝑀𝑥))
6867cbvrabv 3171 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑀𝑛} = {𝑥 ∈ ℤ ∣ 𝑀𝑥}
69 breq2 4581 . . . . . . . 8 (𝑛 = 𝑥 → (𝑁𝑛𝑁𝑥))
7069cbvrabv 3171 . . . . . . 7 {𝑛 ∈ ℤ ∣ 𝑁𝑛} = {𝑥 ∈ ℤ ∣ 𝑁𝑥}
7166, 68, 703sstr3g 3607 . . . . . 6 ((𝑁𝑀𝑁 ≠ 0) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
7244, 71pm2.61dane 2868 . . . . 5 (𝑁𝑀 → {𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥})
73 breq1 4580 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑛𝑥𝑀𝑥))
7473rabbidv 3163 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑀𝑥})
7573abbidv 2727 . . . . . . . . 9 (𝑛 = 𝑀 → {𝑥𝑛𝑥} = {𝑥𝑀𝑥})
7674, 75eqeq12d 2624 . . . . . . . 8 (𝑛 = 𝑀 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥}))
77 simpr 475 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) → 𝑛𝑦)
78 dvdszrcl 14772 . . . . . . . . . . . . 13 (𝑛𝑦 → (𝑛 ∈ ℤ ∧ 𝑦 ∈ ℤ))
7978simprd 477 . . . . . . . . . . . 12 (𝑛𝑦𝑦 ∈ ℤ)
8079ancri 572 . . . . . . . . . . 11 (𝑛𝑦 → (𝑦 ∈ ℤ ∧ 𝑛𝑦))
8177, 80impbii 197 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑛𝑦) ↔ 𝑛𝑦)
82 breq2 4581 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛𝑥𝑛𝑦))
8382elrab 3330 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ (𝑦 ∈ ℤ ∧ 𝑛𝑦))
84 vex 3175 . . . . . . . . . . 11 𝑦 ∈ V
8584, 82elab 3318 . . . . . . . . . 10 (𝑦 ∈ {𝑥𝑛𝑥} ↔ 𝑛𝑦)
8681, 83, 853bitr4i 290 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℤ ∣ 𝑛𝑥} ↔ 𝑦 ∈ {𝑥𝑛𝑥})
8786eqriv 2606 . . . . . . . 8 {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥}
8876, 87vtoclg 3238 . . . . . . 7 (𝑀 ∈ ℤ → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
8988adantr 479 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑀𝑥} = {𝑥𝑀𝑥})
90 breq1 4580 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑥𝑁𝑥))
9190rabbidv 3163 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥 ∈ ℤ ∣ 𝑁𝑥})
9290abbidv 2727 . . . . . . . . 9 (𝑛 = 𝑁 → {𝑥𝑛𝑥} = {𝑥𝑁𝑥})
9391, 92eqeq12d 2624 . . . . . . . 8 (𝑛 = 𝑁 → ({𝑥 ∈ ℤ ∣ 𝑛𝑥} = {𝑥𝑛𝑥} ↔ {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥}))
9493, 87vtoclg 3238 . . . . . . 7 (𝑁𝑉 → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9594adantl 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → {𝑥 ∈ ℤ ∣ 𝑁𝑥} = {𝑥𝑁𝑥})
9689, 95sseq12d 3596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → ({𝑥 ∈ ℤ ∣ 𝑀𝑥} ⊆ {𝑥 ∈ ℤ ∣ 𝑁𝑥} ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
9772, 96syl5ib 232 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥}))
989, 15sseq12i 3593 . . . 4 (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ {𝑥𝑀𝑥} ⊆ {𝑥𝑁𝑥})
9997, 98syl6ibr 240 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (𝑁𝑀 → ( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁})))
10019, 99impbid 200 . 2 ((𝑀 ∈ ℤ ∧ 𝑁𝑉) → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
1011, 2, 100syl2anc 690 1 (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  {cab 2595  wne 2779  {crab 2899  wss 3539  {csn 4124   class class class wbr 4577  cima 5031  Rel wrel 5033  (class class class)co 6527  cc 9790  0cc0 9792   · cmul 9797   / cdiv 10533  cz 11210  cdvds 14767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-n0 11140  df-z 11211  df-dvds 14768
This theorem is referenced by:  nzin  37342
  Copyright terms: Public domain W3C validator