![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1compt | Structured version Visualization version GIF version |
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
o1compt.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
o1compt.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) |
o1compt.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
o1compt.4 | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
o1compt.5 | ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) |
Ref | Expression |
---|---|
o1compt | ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1compt.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | o1compt.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑂(1)) | |
3 | o1compt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐴) | |
4 | eqid 2651 | . . 3 ⊢ (𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | 3, 4 | fmptd 6425 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ 𝐶):𝐵⟶𝐴) |
6 | o1compt.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
7 | o1compt.5 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶)) | |
8 | nfv 1883 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ≤ 𝑧 | |
9 | nfcv 2793 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑚 | |
10 | nfcv 2793 | . . . . . . . . 9 ⊢ Ⅎ𝑦 ≤ | |
11 | nffvmpt1 6237 | . . . . . . . . 9 ⊢ Ⅎ𝑦((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) | |
12 | 9, 10, 11 | nfbr 4732 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) |
13 | 8, 12 | nfim 1865 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) |
14 | nfv 1883 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
15 | breq2 4689 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 𝑦)) | |
16 | fveq2 6229 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) = ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) | |
17 | 16 | breq2d 4697 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
18 | 15, 17 | imbi12d 333 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ((𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)))) |
19 | 13, 14, 18 | cbvral 3197 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦))) |
20 | simpr 476 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
21 | 4 | fvmpt2 6330 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
22 | 20, 3, 21 | syl2anc 694 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) = 𝐶) |
23 | 22 | breq2d 4697 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦) ↔ 𝑚 ≤ 𝐶)) |
24 | 23 | imbi2d 329 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
25 | 24 | ralbidva 3014 | . . . . . 6 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
26 | 19, 25 | syl5bb 272 | . . . . 5 ⊢ (𝜑 → (∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
27 | 26 | rexbidv 3081 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
28 | 27 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑚 ≤ 𝐶))) |
29 | 7, 28 | mpbird 247 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 → 𝑚 ≤ ((𝑦 ∈ 𝐵 ↦ 𝐶)‘𝑧))) |
30 | 1, 2, 5, 6, 29 | o1co 14361 | 1 ⊢ (𝜑 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ 𝐶)) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 ↦ cmpt 4762 ∘ ccom 5147 ⟶wf 5922 ‘cfv 5926 ℂcc 9972 ℝcr 9973 ≤ cle 10113 𝑂(1)co1 14261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-ico 12219 df-o1 14265 |
This theorem is referenced by: dchrisum0 25254 |
Copyright terms: Public domain | W3C validator |