MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Visualization version   GIF version

Theorem o1lo1 14896
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
o1lo1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo1
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 14889 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 14878 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43adantr 483 . . 3 (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ)
54a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ))
6 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
76ralrimiva 3184 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
8 dmmptg 6098 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
97, 8syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109sseq1d 4000 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
11 simpr 487 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → 𝑚 ∈ ℝ)
126adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
1312adantlr 713 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
1513, 14absled 14792 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (-𝑚𝐵𝐵𝑚)))
16 ancom 463 . . . . . . . . . . . . . . . . 17 ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝑚𝐵))
17 lenegcon1 11146 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑚𝐵 ↔ -𝐵𝑚))
1814, 13, 17syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑚𝐵 ↔ -𝐵𝑚))
1918anbi2d 630 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑚 ∧ -𝑚𝐵) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2016, 19syl5bb 285 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2115, 20bitrd 281 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2221imbi2d 343 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2322ralbidva 3198 . . . . . . . . . . . . 13 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2423rexbidv 3299 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2524biimpd 231 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
26 breq2 5072 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝐵𝑛𝐵𝑚))
2726anbi1d 631 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑛 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑝)))
2827imbi2d 343 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
2928rexralbidv 3303 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
30 breq2 5072 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑚 → (-𝐵𝑝 ↔ -𝐵𝑚))
3130anbi2d 630 . . . . . . . . . . . . . . 15 (𝑝 = 𝑚 → ((𝐵𝑚 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
3231imbi2d 343 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3332rexralbidv 3303 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3429, 33rspc2ev 3637 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
35343anidm12 1415 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
3611, 25, 35syl6an 682 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
3736rexlimdva 3286 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
38 simplrr 776 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑛𝑝) → 𝑝 ∈ ℝ)
39 simplrl 775 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ ¬ 𝑛𝑝) → 𝑛 ∈ ℝ)
4038, 39ifclda 4503 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
41 max2 12583 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4241ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4312adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
4443renegcld 11069 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
45 simplrr 776 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ∈ ℝ)
46 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
4745, 46ifcld 4514 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
48 letr 10736 . . . . . . . . . . . . . . . . . . . 20 ((-𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
4944, 45, 47, 48syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5042, 49mpan2d 692 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
51 lenegcon1 11146 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5243, 47, 51syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5350, 52sylibd 241 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
54 max1 12581 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
5554ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
56 letr 10736 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5743, 46, 47, 56syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5855, 57mpan2d 692 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5953, 58anim12d 610 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝐵𝑛) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6059ancomsd 468 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6143, 47absled 14792 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6260, 61sylibrd 261 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6362imim2d 57 . . . . . . . . . . . . 13 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6463ralimdva 3179 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6564reximdv 3275 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
66 breq2 5072 . . . . . . . . . . . . . 14 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((abs‘𝐵) ≤ 𝑚 ↔ (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6766imbi2d 343 . . . . . . . . . . . . 13 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6867rexralbidv 3303 . . . . . . . . . . . 12 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6968rspcev 3625 . . . . . . . . . . 11 ((if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
7040, 65, 69syl6an 682 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7170rexlimdvva 3296 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7237, 71impbid 214 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
73 rexanre 14708 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7473adantl 484 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
75742rexbidv 3302 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7672, 75bitrd 281 . . . . . . 7 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
77 reeanv 3369 . . . . . . 7 (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
7876, 77syl6bb 289 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
79 rexcom 3357 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
80 rexcom 3357 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛))
81 rexcom 3357 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝) ↔ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))
8280, 81anbi12i 628 . . . . . 6 ((∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
8378, 79, 823bitr4g 316 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
84 simpr 487 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
8512recnd 10671 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
8684, 85elo1mpt 14893 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
8784, 12ello1mpt 14880 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛)))
8812renegcld 11069 . . . . . . 7 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
8984, 88ello1mpt 14880 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
9087, 89anbi12d 632 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
9183, 86, 903bitr4d 313 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
9291ex 415 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
9310, 92sylbid 242 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
942, 5, 93pm5.21ndd 383 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148  dom cdm 5557  cfv 6357  cr 10538  cle 10678  -cneg 10873  abscabs 14595  𝑂(1)co1 14845  ≤𝑂(1)clo1 14846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-o1 14849  df-lo1 14850
This theorem is referenced by:  o1lo12  14897  o1lo1d  14898  icco1  14899  lo1sub  14989
  Copyright terms: Public domain W3C validator