MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul2 Structured version   Visualization version   GIF version

Theorem o1mul2 14292
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
o1add2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
o1add2.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
o1mul2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem o1mul2
StepHypRef Expression
1 o1add2.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2960 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 5593 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 o1add2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
6 o1dm 14198 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
84, 7eqsstr3d 3621 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 reex 9974 . . . . 5 ℝ ∈ V
109ssex 4764 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
118, 10syl 17 . . 3 (𝜑𝐴 ∈ V)
12 o1add2.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
13 eqidd 2622 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
14 eqidd 2622 . . 3 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
1511, 1, 12, 13, 14offval2 6870 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘𝑓 · (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶)))
16 o1add2.4 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
17 o1mul 14282 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘𝑓 · (𝑥𝐴𝐶)) ∈ 𝑂(1))
185, 16, 17syl2anc 692 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘𝑓 · (𝑥𝐴𝐶)) ∈ 𝑂(1))
1915, 18eqeltrrd 2699 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3556  cmpt 4675  dom cdm 5076  (class class class)co 6607  𝑓 cof 6851  cr 9882   · cmul 9888  𝑂(1)co1 14154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-pm 7808  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-ico 12126  df-seq 12745  df-exp 12804  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-o1 14158
This theorem is referenced by:  dchrvmasumlem2  25094  dchrvmasumiflem2  25098  dchrisum0fno1  25107  rpvmasum2  25108  dchrisum0lem1  25112  dchrisum0lem2a  25113  dchrisum0lem2  25114  dchrmusumlem  25118  rplogsum  25123  dirith2  25124  mulogsumlem  25127  mulog2sumlem2  25131  mulog2sumlem3  25132  vmalogdivsum2  25134  2vmadivsumlem  25136  selberglem1  25141  selberg3lem1  25153  selberg4lem1  25156  selberg4  25157  selberg3r  25165  selberg4r  25166  selberg34r  25167  pntrlog2bndlem2  25174  pntrlog2bndlem3  25175  pntrlog2bndlem4  25176
  Copyright terms: Public domain W3C validator