MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1of2 Structured version   Visualization version   GIF version

Theorem o1of2 14387
Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1of2.1 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
o1of2.2 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
o1of2.3 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
Assertion
Ref Expression
o1of2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝐹   𝑚,𝐺,𝑛,𝑥,𝑦   𝑅,𝑚,𝑛,𝑥,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑚,𝑛)

Proof of Theorem o1of2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14304 . . . 4 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
2 o1bdd 14306 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
31, 2mpdan 703 . . 3 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
43adantr 480 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
5 o1f 14304 . . . 4 (𝐺 ∈ 𝑂(1) → 𝐺:dom 𝐺⟶ℂ)
6 o1bdd 14306 . . . 4 ((𝐺 ∈ 𝑂(1) ∧ 𝐺:dom 𝐺⟶ℂ) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
75, 6mpdan 703 . . 3 (𝐺 ∈ 𝑂(1) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
87adantl 481 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
9 reeanv 3136 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
10 reeanv 3136 . . . . 5 (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
11 inss1 3866 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
12 ssralv 3699 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚)))
1311, 12ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚))
14 inss2 3867 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
15 ssralv 3699 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1614, 15ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛))
1713, 16anim12i 589 . . . . . . . 8 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
18 r19.26 3093 . . . . . . . 8 (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) ↔ (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
1917, 18sylibr 224 . . . . . . 7 ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)))
20 prth 594 . . . . . . . . . 10 (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
21 simplrl 817 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑎 ∈ ℝ)
2221adantr 480 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑎 ∈ ℝ)
23 simplrr 818 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑏 ∈ ℝ)
2423adantr 480 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑏 ∈ ℝ)
25 o1dm 14305 . . . . . . . . . . . . . . . 16 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
2625ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ⊆ ℝ)
2711, 26syl5ss 3647 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
2827sselda 3636 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑧 ∈ ℝ)
29 maxle 12060 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3022, 24, 28, 29syl3anc 1366 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 ↔ (𝑎𝑧𝑏𝑧)))
3130biimpd 219 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (𝑎𝑧𝑏𝑧)))
321ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹:dom 𝐹⟶ℂ)
3311sseli 3632 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
34 ffvelrn 6397 . . . . . . . . . . . . . 14 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
3532, 33, 34syl2an 493 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
365ad3antlr 767 . . . . . . . . . . . . . 14 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺:dom 𝐺⟶ℂ)
3714sseli 3632 . . . . . . . . . . . . . 14 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
38 ffvelrn 6397 . . . . . . . . . . . . . 14 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
3936, 37, 38syl2an 493 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
40 o1of2.3 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4140ralrimivva 3000 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
4241ad2antlr 763 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀))
43 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (abs‘𝑥) = (abs‘(𝐹𝑧)))
4443breq1d 4695 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → ((abs‘𝑥) ≤ 𝑚 ↔ (abs‘(𝐹𝑧)) ≤ 𝑚))
4544anbi1d 741 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛)))
46 oveq1 6697 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝐹𝑧) → (𝑥𝑅𝑦) = ((𝐹𝑧)𝑅𝑦))
4746fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐹𝑧) → (abs‘(𝑥𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅𝑦)))
4847breq1d 4695 . . . . . . . . . . . . . . 15 (𝑥 = (𝐹𝑧) → ((abs‘(𝑥𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀))
4945, 48imbi12d 333 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑧) → ((((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀)))
50 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → (abs‘𝑦) = (abs‘(𝐺𝑧)))
5150breq1d 4695 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → ((abs‘𝑦) ≤ 𝑛 ↔ (abs‘(𝐺𝑧)) ≤ 𝑛))
5251anbi2d 740 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) ↔ ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)))
53 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐺𝑧) → ((𝐹𝑧)𝑅𝑦) = ((𝐹𝑧)𝑅(𝐺𝑧)))
5453fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑦 = (𝐺𝑧) → (abs‘((𝐹𝑧)𝑅𝑦)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
5554breq1d 4695 . . . . . . . . . . . . . . 15 (𝑦 = (𝐺𝑧) → ((abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5652, 55imbi12d 333 . . . . . . . . . . . . . 14 (𝑦 = (𝐺𝑧) → ((((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅𝑦)) ≤ 𝑀) ↔ (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀)))
5749, 56rspc2va 3354 . . . . . . . . . . . . 13 ((((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((abs‘𝑥) ≤ 𝑚 ∧ (abs‘𝑦) ≤ 𝑛) → (abs‘(𝑥𝑅𝑦)) ≤ 𝑀)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
5835, 39, 42, 57syl21anc 1365 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
59 ffn 6083 . . . . . . . . . . . . . . . 16 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
6032, 59syl 17 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐹 Fn dom 𝐹)
61 ffn 6083 . . . . . . . . . . . . . . . 16 (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺)
6236, 61syl 17 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝐺 Fn dom 𝐺)
63 reex 10065 . . . . . . . . . . . . . . . 16 ℝ ∈ V
64 ssexg 4837 . . . . . . . . . . . . . . . 16 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
6526, 63, 64sylancl 695 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐹 ∈ V)
66 dmexg 7139 . . . . . . . . . . . . . . . 16 (𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V)
6766ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → dom 𝐺 ∈ V)
68 eqid 2651 . . . . . . . . . . . . . . 15 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
69 eqidd 2652 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
70 eqidd 2652 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
7160, 62, 65, 67, 68, 69, 70ofval 6948 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑓 𝑅𝐺)‘𝑧) = ((𝐹𝑧)𝑅(𝐺𝑧)))
7271fveq2d 6233 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) = (abs‘((𝐹𝑧)𝑅(𝐺𝑧))))
7372breq1d 4695 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀 ↔ (abs‘((𝐹𝑧)𝑅(𝐺𝑧))) ≤ 𝑀))
7458, 73sylibrd 249 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛) → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀))
7531, 74imim12d 81 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧𝑏𝑧) → ((abs‘(𝐹𝑧)) ≤ 𝑚 ∧ (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7620, 75syl5 34 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
7776ralimdva 2991 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)))
78 o1of2.2 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑅𝑦) ∈ ℂ)
7978adantl 481 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥𝑅𝑦) ∈ ℂ)
8079, 32, 36, 65, 67, 68off 6954 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
8123, 21ifcld 4164 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
82 o1of2.1 . . . . . . . . . 10 ((𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ) → 𝑀 ∈ ℝ)
8382adantl 481 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → 𝑀 ∈ ℝ)
84 elo12r 14303 . . . . . . . . . 10 ((((𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
85843expia 1286 . . . . . . . . 9 ((((𝐹𝑓 𝑅𝐺):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ) ∧ (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8680, 27, 81, 83, 85syl22anc 1367 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑧 → (abs‘((𝐹𝑓 𝑅𝐺)‘𝑧)) ≤ 𝑀) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8777, 86syld 47 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → (∀𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ (𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8819, 87syl5 34 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) ∧ (𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ)) → ((∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
8988rexlimdvva 3067 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
9010, 89syl5bir 233 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → ((∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
9190rexlimdvva 3067 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
929, 91syl5bir 233 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → ((∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑎𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑚) ∧ ∃𝑏 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧 ∈ dom 𝐺(𝑏𝑧 → (abs‘(𝐺𝑧)) ≤ 𝑛)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1)))
934, 8, 92mp2and 715 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1)) → (𝐹𝑓 𝑅𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  ifcif 4119   class class class wbr 4685  dom cdm 5143   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  cr 9973  cle 10113  abscabs 14018  𝑂(1)co1 14261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ico 12219  df-o1 14265
This theorem is referenced by:  o1add  14388  o1mul  14389  o1sub  14390
  Copyright terms: Public domain W3C validator