MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Structured version   Visualization version   GIF version

Theorem o1rlimmul 14278
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) ⇝𝑟 0)

Proof of Theorem o1rlimmul
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14189 . . . . 5 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
21adantr 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹:dom 𝐹⟶ℂ)
3 ffn 6004 . . . 4 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
42, 3syl 17 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹 Fn dom 𝐹)
5 rlimf 14161 . . . . 5 (𝐺𝑟 0 → 𝐺:dom 𝐺⟶ℂ)
65adantl 482 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺:dom 𝐺⟶ℂ)
7 ffn 6004 . . . 4 (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺)
86, 7syl 17 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 Fn dom 𝐺)
9 o1dm 14190 . . . . 5 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
109adantr 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ⊆ ℝ)
11 reex 9972 . . . 4 ℝ ∈ V
12 ssexg 4769 . . . 4 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
1310, 11, 12sylancl 693 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ∈ V)
14 rlimss 14162 . . . . 5 (𝐺𝑟 0 → dom 𝐺 ⊆ ℝ)
1514adantl 482 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ⊆ ℝ)
16 ssexg 4769 . . . 4 ((dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐺 ∈ V)
1715, 11, 16sylancl 693 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ∈ V)
18 eqid 2626 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
19 eqidd 2627 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
20 eqidd 2627 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
214, 8, 13, 17, 18, 19, 20offval 6858 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
22 o1bdd 14191 . . . . . . 7 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
231, 22mpdan 701 . . . . . 6 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
2423ad2antrr 761 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
25 fvex 6160 . . . . . . . . . 10 (𝐺𝑥) ∈ V
2625a1i 11 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
2726ralrimiva 2965 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∀𝑥 ∈ dom 𝐺(𝐺𝑥) ∈ V)
28 simplr 791 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ+)
29 recn 9971 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
3029ad2antll 764 . . . . . . . . . . 11 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℂ)
3130abscld 14104 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝑚) ∈ ℝ)
3230absge0d 14112 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ (abs‘𝑚))
3331, 32ge0p1rpd 11846 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ+)
3428, 33rpdivcld 11833 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
356feqmptd 6207 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
36 simpr 477 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺𝑟 0)
3735, 36eqbrtrrd 4642 . . . . . . . . 9 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3837ad2antrr 761 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3927, 34, 38rlimi 14173 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
40 inss1 3816 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
41 ssralv 3650 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4240, 41ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
43 inss2 3817 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
44 ssralv 3650 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4543, 44ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
4642, 45anim12i 589 . . . . . . . . . . . 12 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
47 r19.26 3062 . . . . . . . . . . . 12 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) ↔ (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4846, 47sylibr 224 . . . . . . . . . . 11 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
49 prth 594 . . . . . . . . . . . 12 (((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
5049ralimi 2952 . . . . . . . . . . 11 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
5148, 50syl 17 . . . . . . . . . 10 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
52 simplrl 799 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑎 ∈ ℝ)
53 simprl 793 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑏 ∈ ℝ)
5440, 10syl5ss 3599 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
5554ad3antrrr 765 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
56 simprr 795 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))
5755, 56sseldd 3589 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ ℝ)
58 maxle 11964 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5952, 53, 57, 58syl3anc 1323 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
6059biimpd 219 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (𝑎𝑥𝑏𝑥)))
616ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐺:dom 𝐺⟶ℂ)
6243sseli 3584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
6362ad2antll 764 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐺)
6461, 63ffvelrnd 6317 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐺𝑥) ∈ ℂ)
6564subid1d 10326 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐺𝑥) − 0) = (𝐺𝑥))
6665fveq2d 6154 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐺𝑥) − 0)) = (abs‘(𝐺𝑥)))
6766breq1d 4628 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) ↔ (abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1))))
6864abscld 14104 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐺𝑥)) ∈ ℝ)
6934adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
7069rpred 11816 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)
71 ltle 10071 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐺𝑥)) ∈ ℝ ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7268, 70, 71syl2anc 692 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7367, 72sylbid 230 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7473anim2d 588 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1)))))
752ad3antrrr 765 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐹:dom 𝐹⟶ℂ)
7640sseli 3584 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
7776ad2antll 764 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐹)
7875, 77ffvelrnd 6317 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐹𝑥) ∈ ℂ)
7978abscld 14104 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐹𝑥)) ∈ ℝ)
8078absge0d 14112 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐹𝑥)))
8179, 80jca 554 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))))
82 simplrr 800 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℝ)
8364absge0d 14112 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐺𝑥)))
8468, 83jca 554 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))))
85 lemul12a 10826 . . . . . . . . . . . . . . . 16 (((((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))) ∧ 𝑚 ∈ ℝ) ∧ (((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))) ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8681, 82, 84, 70, 85syl22anc 1324 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8778, 64absmuld 14122 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) = ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))))
8887breq1d 4628 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ↔ ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8982recnd 10013 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℂ)
9028adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ+)
9190rpcnd 11818 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℂ)
9233adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ+)
9392rpcnd 11818 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℂ)
9492rpne0d 11821 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ≠ 0)
9589, 91, 93, 94divassd 10781 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) = (𝑚 · (𝑦 / ((abs‘𝑚) + 1))))
96 peano2re 10154 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑚) ∈ ℝ → ((abs‘𝑚) + 1) ∈ ℝ)
9731, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ)
9897adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ)
9931adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) ∈ ℝ)
10082leabsd 14082 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ≤ (abs‘𝑚))
10199ltp1d 10899 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) < ((abs‘𝑚) + 1))
10282, 99, 98, 100, 101lelttrd 10140 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 < ((abs‘𝑚) + 1))
10382, 98, 90, 102ltmul1dd 11871 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦))
10490rpred 11816 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ)
10582, 104remulcld 10015 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) ∈ ℝ)
106105, 104, 92ltdivmuld 11867 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦 ↔ (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦)))
107103, 106mpbird 247 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦)
10895, 107eqbrtrrd 4642 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦)
10978, 64mulcld 10005 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
110109abscld 14104 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ)
11182, 70remulcld 10015 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ)
112 lelttr 10073 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
113110, 111, 104, 112syl3anc 1323 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
114108, 113mpan2d 709 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11588, 114sylbird 250 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11674, 86, 1153syld 60 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11760, 116imim12d 81 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
118117anassrs 679 . . . . . . . . . . . 12 ((((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
119118ralimdva 2961 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
120 simpr 477 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
121 simplrl 799 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℝ)
122120, 121ifcld 4108 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
123119, 122jctild 565 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
124 breq1 4621 . . . . . . . . . . . . 13 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑧𝑥 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥))
125124imbi1d 331 . . . . . . . . . . . 12 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → ((𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦) ↔ (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
126125ralbidv 2985 . . . . . . . . . . 11 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
127126rspcev 3300 . . . . . . . . . 10 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
12851, 123, 127syl56 36 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
129128expcomd 454 . . . . . . . 8 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
130129rexlimdva 3029 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
13139, 130mpd 15 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
132131rexlimdvva 3036 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
13324, 132mpd 15 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
134133ralrimiva 2965 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
135 ffvelrn 6314 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
1362, 76, 135syl2an 494 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
137 ffvelrn 6314 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
1386, 62, 137syl2an 494 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
139136, 138mulcld 10005 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
140139ralrimiva 2965 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
141140, 54rlim0 14168 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
142134, 141mpbird 247 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0)
14321, 142eqbrtrd 4640 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  wrex 2913  Vcvv 3191  cin 3559  wss 3560  ifcif 4063   class class class wbr 4618  cmpt 4678  dom cdm 5079   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  𝑓 cof 6849  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211   / cdiv 10629  +crp 11776  abscabs 13903  𝑟 crli 14145  𝑂(1)co1 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-ico 12120  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-rlim 14149  df-o1 14150
This theorem is referenced by:  chtppilimlem2  25058  chpchtlim  25063
  Copyright terms: Public domain W3C validator