MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0r Structured version   Visualization version   GIF version

Theorem oa0r 8152
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oa0r (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴)

Proof of Theorem oa0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7153 . . 3 (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2834 . 2 (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅))
4 oveq2 7153 . . 3 (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2834 . 2 (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦))
7 oveq2 7153 . . 3 (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2834 . 2 (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦))
10 oveq2 7153 . . 3 (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2834 . 2 (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴))
13 0elon 6237 . . 3 ∅ ∈ On
14 oa0 8130 . . 3 (∅ ∈ On → (∅ +o ∅) = ∅)
1513, 14ax-mp 5 . 2 (∅ +o ∅) = ∅
16 oasuc 8138 . . . . 5 ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
1713, 16mpan 686 . . . 4 (𝑦 ∈ On → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
18 suceq 6249 . . . 4 ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦)
1917, 18sylan9eq 2873 . . 3 ((𝑦 ∈ On ∧ (∅ +o 𝑦) = 𝑦) → (∅ +o suc 𝑦) = suc 𝑦)
2019ex 413 . 2 (𝑦 ∈ On → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦))
21 iuneq2 4929 . . . 4 (∀𝑦𝑥 (∅ +o 𝑦) = 𝑦 𝑦𝑥 (∅ +o 𝑦) = 𝑦𝑥 𝑦)
22 uniiun 4973 . . . 4 𝑥 = 𝑦𝑥 𝑦
2321, 22syl6eqr 2871 . . 3 (∀𝑦𝑥 (∅ +o 𝑦) = 𝑦 𝑦𝑥 (∅ +o 𝑦) = 𝑥)
24 vex 3495 . . . . 5 𝑥 ∈ V
25 oalim 8146 . . . . . 6 ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ +o 𝑥) = 𝑦𝑥 (∅ +o 𝑦))
2613, 25mpan 686 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ +o 𝑥) = 𝑦𝑥 (∅ +o 𝑦))
2724, 26mpan 686 . . . 4 (Lim 𝑥 → (∅ +o 𝑥) = 𝑦𝑥 (∅ +o 𝑦))
28 limuni 6244 . . . 4 (Lim 𝑥𝑥 = 𝑥)
2927, 28eqeq12d 2834 . . 3 (Lim 𝑥 → ((∅ +o 𝑥) = 𝑥 𝑦𝑥 (∅ +o 𝑦) = 𝑥))
3023, 29syl5ibr 247 . 2 (Lim 𝑥 → (∀𝑦𝑥 (∅ +o 𝑦) = 𝑦 → (∅ +o 𝑥) = 𝑥))
313, 6, 9, 12, 15, 20, 30tfinds 7563 1 (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  c0 4288   cuni 4830   ciun 4910  Oncon0 6184  Lim wlim 6185  suc csuc 6186  (class class class)co 7145   +o coa 8088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095
This theorem is referenced by:  om1  8157  oaword2  8168  oeeui  8217  oaabs2  8261  cantnfp1  9132
  Copyright terms: Public domain W3C validator