MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacl Structured version   Visualization version   GIF version

Theorem oacl 8162
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oacl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)

Proof of Theorem oacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . 4 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
21eleq1d 2899 . . 3 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On))
3 oveq2 7166 . . . 4 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
43eleq1d 2899 . . 3 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On))
5 oveq2 7166 . . . 4 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
65eleq1d 2899 . . 3 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On))
7 oveq2 7166 . . . 4 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
87eleq1d 2899 . . 3 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On))
9 oa0 8143 . . . . 5 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
109eleq1d 2899 . . . 4 (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On))
1110ibir 270 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) ∈ On)
12 suceloni 7530 . . . . 5 ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On)
13 oasuc 8151 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
1413eleq1d 2899 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On))
1512, 14syl5ibr 248 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))
1615expcom 416 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)))
17 vex 3499 . . . . . 6 𝑥 ∈ V
18 iunon 7978 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
1917, 18mpan 688 . . . . 5 (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
20 oalim 8159 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2117, 20mpanr1 701 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2221eleq1d 2899 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 +o 𝑦) ∈ On))
2319, 22syl5ibr 248 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))
2423expcom 416 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)))
252, 4, 6, 8, 11, 16, 24tfinds3 7581 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On))
2625impcom 410 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  c0 4293   ciun 4921  Oncon0 6193  Lim wlim 6194  suc csuc 6195  (class class class)co 7158   +o coa 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108
This theorem is referenced by:  omcl  8163  oaord  8175  oacan  8176  oaword  8177  oawordri  8178  oawordeulem  8182  oalimcl  8188  oaass  8189  oaf1o  8191  odi  8207  omopth2  8212  oeoalem  8224  oeoa  8225  oancom  9116  cantnfvalf  9130  dfac12lem2  9572  djunum  9623  wunex3  10165  rdgeqoa  34653
  Copyright terms: Public domain W3C validator