MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalim Structured version   Visualization version   GIF version

Theorem oalim 7473
Description: Ordinal addition with a limit ordinal. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oalim ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +𝑜 𝐵) = 𝑥𝐵 (𝐴 +𝑜 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem oalim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 5688 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 475 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 552 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 7390 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
54adantl 480 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
6 oav 7452 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵))
7 onelon 5648 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 oav 7452 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +𝑜 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
97, 8sylan2 489 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → (𝐴 +𝑜 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
109anassrs 677 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → (𝐴 +𝑜 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
1110iuneq2dv 4469 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐴 +𝑜 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
126, 11eqeq12d 2621 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) = 𝑥𝐵 (𝐴 +𝑜 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
1312adantrr 748 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 +𝑜 𝐵) = 𝑥𝐵 (𝐴 +𝑜 𝑥) ↔ (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
145, 13mpbird 245 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 +𝑜 𝐵) = 𝑥𝐵 (𝐴 +𝑜 𝑥))
153, 14sylan2 489 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +𝑜 𝐵) = 𝑥𝐵 (𝐴 +𝑜 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  Vcvv 3169   ciun 4446  cmpt 4634  Oncon0 5623  Lim wlim 5624  suc csuc 5625  cfv 5787  (class class class)co 6524  reccrdg 7366   +𝑜 coa 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-oadd 7425
This theorem is referenced by:  oacl  7476  oa0r  7479  oaordi  7487  oawordri  7491  oawordeulem  7495  oalimcl  7501  oaass  7502  oarec  7503  odi  7520  oeoalem  7537  oaabslem  7584  oaabs2  7586
  Copyright terms: Public domain W3C validator