MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oancom Structured version   Visualization version   GIF version

Theorem oancom 9116
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oancom (1o +o ω) ≠ (ω +o 1o)

Proof of Theorem oancom
StepHypRef Expression
1 omex 9108 . . . 4 ω ∈ V
21sucid 6272 . . 3 ω ∈ suc ω
3 omelon 9111 . . . 4 ω ∈ On
4 1onn 8267 . . . 4 1o ∈ ω
5 oaabslem 8272 . . . 4 ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω)
63, 4, 5mp2an 690 . . 3 (1o +o ω) = ω
7 oa1suc 8158 . . . 4 (ω ∈ On → (ω +o 1o) = suc ω)
83, 7ax-mp 5 . . 3 (ω +o 1o) = suc ω
92, 6, 83eltr4i 2928 . 2 (1o +o ω) ∈ (ω +o 1o)
10 1on 8111 . . . . 5 1o ∈ On
11 oacl 8162 . . . . 5 ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On)
1210, 3, 11mp2an 690 . . . 4 (1o +o ω) ∈ On
13 oacl 8162 . . . . 5 ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On)
143, 10, 13mp2an 690 . . . 4 (ω +o 1o) ∈ On
15 onelpss 6233 . . . 4 (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))))
1612, 14, 15mp2an 690 . . 3 ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))
1716simprbi 499 . 2 ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o))
189, 17ax-mp 5 1 (1o +o ω) ≠ (ω +o 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wss 3938  Oncon0 6193  suc csuc 6195  (class class class)co 7158  ωcom 7582  1oc1o 8097   +o coa 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator