MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord Structured version   Visualization version   GIF version

Theorem oaord 7796
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58 and its converse. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaord ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem oaord
StepHypRef Expression
1 oaordi 7795 . . 3 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
213adant1 1125 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
3 oveq2 6821 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵)))
5 oaordi 7795 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
653adant2 1126 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
74, 6orim12d 919 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
87con3d 148 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1074 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On))
10 ancom 465 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) ↔ (𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)))
11 anandi 906 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
129, 10, 113bitri 286 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ↔ ((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)))
13 oacl 7784 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +𝑜 𝐴) ∈ On)
14 eloni 5894 . . . . . . 7 ((𝐶 +𝑜 𝐴) ∈ On → Ord (𝐶 +𝑜 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → Ord (𝐶 +𝑜 𝐴))
16 oacl 7784 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 +𝑜 𝐵) ∈ On)
17 eloni 5894 . . . . . . 7 ((𝐶 +𝑜 𝐵) ∈ On → Ord (𝐶 +𝑜 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐶 +𝑜 𝐵))
1915, 18anim12i 591 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
2012, 19sylbi 207 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
21 ordtri2 5919 . . . 4 ((Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
23 eloni 5894 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
24 eloni 5894 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
2523, 24anim12i 591 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1127 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 5919 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 283 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) → 𝐴𝐵))
302, 29impbid 202 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  Ord word 5883  Oncon0 5884  (class class class)co 6813   +𝑜 coa 7726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-oadd 7733
This theorem is referenced by:  oacan  7797  oaword  7798  oaord1  7800  oa00  7808  oalimcl  7809  oaass  7810  odi  7828  oneo  7830  omeulem1  7831  omeulem2  7832  oeeui  7851  omxpenlem  8226  cantnflt  8742  cantnflem1d  8758  cantnflem1  8759
  Copyright terms: Public domain W3C validator