MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordi Structured version   Visualization version   GIF version

Theorem oaordi 7490
Description: Ordering property of ordinal addition. Proposition 8.4 of [TakeutiZaring] p. 58. (Contributed by NM, 5-Dec-2004.)
Assertion
Ref Expression
oaordi ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem oaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5651 . . . . 5 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
21adantll 745 . . . 4 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
3 eloni 5636 . . . . . . . . 9 (𝐵 ∈ On → Ord 𝐵)
4 ordsucss 6887 . . . . . . . . 9 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ On → (𝐴𝐵 → suc 𝐴𝐵))
65ad2antlr 758 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝐴𝐵 → suc 𝐴𝐵))
7 sucelon 6886 . . . . . . . . . 10 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
8 oveq2 6535 . . . . . . . . . . . . . 14 (𝑥 = suc 𝐴 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 suc 𝐴))
98sseq2d 3595 . . . . . . . . . . . . 13 (𝑥 = suc 𝐴 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴)))
109imbi2d 328 . . . . . . . . . . . 12 (𝑥 = suc 𝐴 → ((𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴))))
11 oveq2 6535 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 𝑦))
1211sseq2d 3595 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦)))
1312imbi2d 328 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦))))
14 oveq2 6535 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 suc 𝑦))
1514sseq2d 3595 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦)))
1615imbi2d 328 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
17 oveq2 6535 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐶 +𝑜 𝑥) = (𝐶 +𝑜 𝐵))
1817sseq2d 3595 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
1918imbi2d 328 . . . . . . . . . . . 12 (𝑥 = 𝐵 → ((𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)) ↔ (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵))))
20 ssid 3586 . . . . . . . . . . . . 13 (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴)
21202a1i 12 . . . . . . . . . . . 12 (suc 𝐴 ∈ On → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝐴)))
22 sssucid 5705 . . . . . . . . . . . . . . . . 17 (𝐶 +𝑜 𝑦) ⊆ suc (𝐶 +𝑜 𝑦)
23 sstr2 3574 . . . . . . . . . . . . . . . . 17 ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → ((𝐶 +𝑜 𝑦) ⊆ suc (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ suc (𝐶 +𝑜 𝑦)))
2422, 23mpi 20 . . . . . . . . . . . . . . . 16 ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ suc (𝐶 +𝑜 𝑦))
25 oasuc 7468 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 +𝑜 suc 𝑦) = suc (𝐶 +𝑜 𝑦))
2625ancoms 467 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → (𝐶 +𝑜 suc 𝑦) = suc (𝐶 +𝑜 𝑦))
2726sseq2d 3595 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦) ↔ (𝐶 +𝑜 suc 𝐴) ⊆ suc (𝐶 +𝑜 𝑦)))
2824, 27syl5ibr 234 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦)))
2928ex 448 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝐶 ∈ On → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
3029ad2antrr 757 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → (𝐶 ∈ On → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
3130a2d 29 . . . . . . . . . . . 12 (((𝑦 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑦) → ((𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦)) → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 suc 𝑦))))
32 sucssel 5722 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (suc 𝐴𝑥𝐴𝑥))
337, 32sylbir 223 . . . . . . . . . . . . . . . . . . 19 (suc 𝐴 ∈ On → (suc 𝐴𝑥𝐴𝑥))
34 limsuc 6918 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
3534biimpd 217 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → (𝐴𝑥 → suc 𝐴𝑥))
3633, 35sylan9r 687 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ suc 𝐴 ∈ On) → (suc 𝐴𝑥 → suc 𝐴𝑥))
3736imp 443 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → suc 𝐴𝑥)
38 oveq2 6535 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝐴 → (𝐶 +𝑜 𝑦) = (𝐶 +𝑜 suc 𝐴))
3938ssiun2s 4494 . . . . . . . . . . . . . . . . 17 (suc 𝐴𝑥 → (𝐶 +𝑜 suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +𝑜 𝑦))
4037, 39syl 17 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝐶 +𝑜 suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +𝑜 𝑦))
4140adantr 479 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +𝑜 suc 𝐴) ⊆ 𝑦𝑥 (𝐶 +𝑜 𝑦))
42 vex 3175 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
43 oalim 7476 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐶 +𝑜 𝑥) = 𝑦𝑥 (𝐶 +𝑜 𝑦))
4442, 43mpanr1 714 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ On ∧ Lim 𝑥) → (𝐶 +𝑜 𝑥) = 𝑦𝑥 (𝐶 +𝑜 𝑦))
4544ancoms 467 . . . . . . . . . . . . . . . . 17 ((Lim 𝑥𝐶 ∈ On) → (𝐶 +𝑜 𝑥) = 𝑦𝑥 (𝐶 +𝑜 𝑦))
4645adantlr 746 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ 𝐶 ∈ On) → (𝐶 +𝑜 𝑥) = 𝑦𝑥 (𝐶 +𝑜 𝑦))
4746adantlr 746 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +𝑜 𝑥) = 𝑦𝑥 (𝐶 +𝑜 𝑦))
4841, 47sseqtr4d 3604 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) ∧ 𝐶 ∈ On) → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥))
4948ex 448 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥)))
5049a1d 25 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝑥) → (∀𝑦𝑥 (suc 𝐴𝑦 → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑦))) → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝑥))))
5110, 13, 16, 19, 21, 31, 50tfindsg 6929 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ suc 𝐴 ∈ On) ∧ suc 𝐴𝐵) → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
5251exp31 627 . . . . . . . . . 10 (𝐵 ∈ On → (suc 𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
537, 52syl5bi 230 . . . . . . . . 9 (𝐵 ∈ On → (𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 ∈ On → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
5453com4r 91 . . . . . . . 8 (𝐶 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (suc 𝐴𝐵 → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))))
5554imp31 446 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (suc 𝐴𝐵 → (𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
56 oasuc 7468 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 +𝑜 suc 𝐴) = suc (𝐶 +𝑜 𝐴))
5756sseq1d 3594 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵) ↔ suc (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵)))
58 ovex 6555 . . . . . . . . . 10 (𝐶 +𝑜 𝐴) ∈ V
59 sucssel 5722 . . . . . . . . . 10 ((𝐶 +𝑜 𝐴) ∈ V → (suc (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
6058, 59ax-mp 5 . . . . . . . . 9 (suc (𝐶 +𝑜 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
6157, 60syl6bi 241 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
6261adantlr 746 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → ((𝐶 +𝑜 suc 𝐴) ⊆ (𝐶 +𝑜 𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
636, 55, 623syld 57 . . . . . 6 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
6463imp 443 . . . . 5 ((((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ∈ On) ∧ 𝐴𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
6564an32s 841 . . . 4 ((((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) ∧ 𝐴 ∈ On) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
662, 65mpdan 698 . . 3 (((𝐶 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
6766ex 448 . 2 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
6867ancoms 467 1 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539   ciun 4449  Ord word 5625  Oncon0 5626  Lim wlim 5627  suc csuc 5628  (class class class)co 6527   +𝑜 coa 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-oadd 7428
This theorem is referenced by:  oaord  7491  oaass  7505  odi  7523
  Copyright terms: Public domain W3C validator