MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obselocv Structured version   Visualization version   GIF version

Theorem obselocv 19833
Description: A basis element is in the orthocomplement of a subset of the basis iff it is not in the subset. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
obselocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obselocv ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))

Proof of Theorem obselocv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . . . . . 7 (0g𝑊) = (0g𝑊)
21obsne0 19830 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → 𝐴 ≠ (0g𝑊))
323adant2 1072 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ≠ (0g𝑊))
4 elin 3757 . . . . . . . 8 (𝐴 ∈ (𝐶 ∩ ( 𝐶)) ↔ (𝐴𝐶𝐴 ∈ ( 𝐶)))
5 obsrcl 19828 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
653ad2ant1 1074 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ PreHil)
7 phllmod 19739 . . . . . . . . . . . . 13 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝑊 ∈ LMod)
9 simp2 1054 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶𝐵)
10 eqid 2609 . . . . . . . . . . . . . . 15 (Base‘𝑊) = (Base‘𝑊)
1110obsss 19829 . . . . . . . . . . . . . 14 (𝐵 ∈ (OBasis‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
12113ad2ant1 1074 . . . . . . . . . . . . 13 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐵 ⊆ (Base‘𝑊))
139, 12sstrd 3577 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ (Base‘𝑊))
14 eqid 2609 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
1510, 14lspssid 18752 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
168, 13, 15syl2anc 690 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐶 ⊆ ((LSpan‘𝑊)‘𝐶))
17 ssrin 3799 . . . . . . . . . . 11 (𝐶 ⊆ ((LSpan‘𝑊)‘𝐶) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
1816, 17syl 17 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
19 obselocv.o . . . . . . . . . . . . . 14 = (ocv‘𝑊)
2010, 19, 14ocvlsp 19781 . . . . . . . . . . . . 13 ((𝑊 ∈ PreHil ∧ 𝐶 ⊆ (Base‘𝑊)) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
216, 13, 20syl2anc 690 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ( ‘((LSpan‘𝑊)‘𝐶)) = ( 𝐶))
2221ineq2d 3775 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)))
23 eqid 2609 . . . . . . . . . . . . . 14 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2410, 23, 14lspcl 18743 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐶 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
258, 13, 24syl2anc 690 . . . . . . . . . . . 12 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊))
2619, 23, 1ocvin 19779 . . . . . . . . . . . 12 ((𝑊 ∈ PreHil ∧ ((LSpan‘𝑊)‘𝐶) ∈ (LSubSp‘𝑊)) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
276, 25, 26syl2anc 690 . . . . . . . . . . 11 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( ‘((LSpan‘𝑊)‘𝐶))) = {(0g𝑊)})
2822, 27eqtr3d 2645 . . . . . . . . . 10 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (((LSpan‘𝑊)‘𝐶) ∩ ( 𝐶)) = {(0g𝑊)})
2918, 28sseqtrd 3603 . . . . . . . . 9 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐶 ∩ ( 𝐶)) ⊆ {(0g𝑊)})
3029sseld 3566 . . . . . . . 8 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ (𝐶 ∩ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
314, 30syl5bir 231 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 ∈ {(0g𝑊)}))
32 elsni 4141 . . . . . . 7 (𝐴 ∈ {(0g𝑊)} → 𝐴 = (0g𝑊))
3331, 32syl6 34 . . . . . 6 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ((𝐴𝐶𝐴 ∈ ( 𝐶)) → 𝐴 = (0g𝑊)))
3433necon3ad 2794 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ≠ (0g𝑊) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶))))
353, 34mpd 15 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
36 imnan 436 . . . 4 ((𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)) ↔ ¬ (𝐴𝐶𝐴 ∈ ( 𝐶)))
3735, 36sylibr 222 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴𝐶 → ¬ 𝐴 ∈ ( 𝐶)))
3837con2d 127 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) → ¬ 𝐴𝐶))
39 simpr 475 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐶)
40 eleq1 2675 . . . . . . 7 (𝐴 = 𝑥 → (𝐴𝐶𝑥𝐶))
4139, 40syl5ibrcom 235 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴 = 𝑥𝐴𝐶))
4241con3d 146 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → ¬ 𝐴 = 𝑥))
43 simpl1 1056 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐵 ∈ (OBasis‘𝑊))
44 simpl3 1058 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝐴𝐵)
459sselda 3567 . . . . . . 7 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → 𝑥𝐵)
46 eqid 2609 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
47 eqid 2609 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
48 eqid 2609 . . . . . . . 8 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
49 eqid 2609 . . . . . . . 8 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5010, 46, 47, 48, 49obsip 19826 . . . . . . 7 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝑥𝐵) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
5143, 44, 45, 50syl3anc 1317 . . . . . 6 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))))
52 iffalse 4044 . . . . . . 7 𝐴 = 𝑥 → if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) = (0g‘(Scalar‘𝑊)))
5352eqeq2d 2619 . . . . . 6 𝐴 = 𝑥 → ((𝐴(·𝑖𝑊)𝑥) = if(𝐴 = 𝑥, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ↔ (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5451, 53syl5ibcom 233 . . . . 5 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴 = 𝑥 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5542, 54syld 45 . . . 4 (((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) ∧ 𝑥𝐶) → (¬ 𝐴𝐶 → (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
5655ralrimdva 2951 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶 → ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
57 simp3 1055 . . . . 5 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴𝐵)
5812, 57sseldd 3568 . . . 4 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → 𝐴 ∈ (Base‘𝑊))
5910, 46, 47, 49, 19elocv 19773 . . . . . 6 (𝐴 ∈ ( 𝐶) ↔ (𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
60 df-3an 1032 . . . . . 6 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6159, 60bitri 262 . . . . 5 (𝐴 ∈ ( 𝐶) ↔ ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) ∧ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6261baib 941 . . . 4 ((𝐶 ⊆ (Base‘𝑊) ∧ 𝐴 ∈ (Base‘𝑊)) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6313, 58, 62syl2anc 690 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ∀𝑥𝐶 (𝐴(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
6456, 63sylibrd 247 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (¬ 𝐴𝐶𝐴 ∈ ( 𝐶)))
6538, 64impbid 200 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐶𝐵𝐴𝐵) → (𝐴 ∈ ( 𝐶) ↔ ¬ 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  cin 3538  wss 3539  ifcif 4035  {csn 4124  cfv 5790  (class class class)co 6527  Basecbs 15641  Scalarcsca 15717  ·𝑖cip 15719  0gc0g 15869  1rcur 18270  LModclmod 18632  LSubSpclss 18699  LSpanclspn 18738  PreHilcphl 19733  ocvcocv 19765  OBasiscobs 19807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-ip 15732  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-grp 17194  df-minusg 17195  df-sbg 17196  df-ghm 17427  df-mgp 18259  df-ur 18271  df-ring 18318  df-oppr 18392  df-dvdsr 18410  df-unit 18411  df-rnghom 18484  df-drng 18518  df-staf 18614  df-srng 18615  df-lmod 18634  df-lss 18700  df-lsp 18739  df-lmhm 18789  df-lvec 18870  df-sra 18939  df-rgmod 18940  df-phl 19735  df-ocv 19768  df-obs 19810
This theorem is referenced by:  obs2ss  19834  obslbs  19835
  Copyright terms: Public domain W3C validator