![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsip | Structured version Visualization version GIF version |
Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
isobs.v | ⊢ 𝑉 = (Base‘𝑊) |
isobs.h | ⊢ , = (·𝑖‘𝑊) |
isobs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isobs.u | ⊢ 1 = (1r‘𝐹) |
isobs.z | ⊢ 0 = (0g‘𝐹) |
Ref | Expression |
---|---|
obsip | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isobs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | isobs.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
3 | isobs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | isobs.u | . . . . . 6 ⊢ 1 = (1r‘𝐹) | |
5 | isobs.z | . . . . . 6 ⊢ 0 = (0g‘𝐹) | |
6 | eqid 2760 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
7 | eqid 2760 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 20266 | . . . . 5 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
9 | 8 | simp3bi 1142 | . . . 4 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)})) |
10 | 9 | simpld 477 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )) |
11 | oveq1 6820 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑥 , 𝑦) = (𝑃 , 𝑦)) | |
12 | eqeq1 2764 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 = 𝑦 ↔ 𝑃 = 𝑦)) | |
13 | 12 | ifbid 4252 | . . . . 5 ⊢ (𝑥 = 𝑃 → if(𝑥 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑦, 1 , 0 )) |
14 | 11, 13 | eqeq12d 2775 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ))) |
15 | oveq2 6821 | . . . . 5 ⊢ (𝑦 = 𝑄 → (𝑃 , 𝑦) = (𝑃 , 𝑄)) | |
16 | eqeq2 2771 | . . . . . 6 ⊢ (𝑦 = 𝑄 → (𝑃 = 𝑦 ↔ 𝑃 = 𝑄)) | |
17 | 16 | ifbid 4252 | . . . . 5 ⊢ (𝑦 = 𝑄 → if(𝑃 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑄, 1 , 0 )) |
18 | 15, 17 | eqeq12d 2775 | . . . 4 ⊢ (𝑦 = 𝑄 → ((𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
19 | 14, 18 | rspc2v 3461 | . . 3 ⊢ ((𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
20 | 10, 19 | syl5com 31 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ((𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
21 | 20 | 3impib 1109 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ifcif 4230 {csn 4321 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 Scalarcsca 16146 ·𝑖cip 16148 0gc0g 16302 1rcur 18701 PreHilcphl 20171 ocvcocv 20206 OBasiscobs 20248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-obs 20251 |
This theorem is referenced by: obsipid 20268 obselocv 20274 |
Copyright terms: Public domain | W3C validator |