HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Structured version   Visualization version   GIF version

Theorem occllem 29082
Description: Lemma for occl 29083. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1 (𝜑𝐴 ⊆ ℋ)
occl.2 (𝜑𝐹 ∈ Cauchy)
occl.3 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
occl.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
occllem (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)

Proof of Theorem occllem
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldhaus 23395 . . 3 (TopOpen‘ℂfld) ∈ Haus
32a1i 11 . 2 (𝜑 → (TopOpen‘ℂfld) ∈ Haus)
4 occl.2 . . . . . . 7 (𝜑𝐹 ∈ Cauchy)
5 ax-hcompl 28981 . . . . . . 7 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
6 hlimf 29016 . . . . . . . . . 10 𝑣 :dom ⇝𝑣 ⟶ ℋ
7 ffn 6516 . . . . . . . . . 10 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
86, 7ax-mp 5 . . . . . . . . 9 𝑣 Fn dom ⇝𝑣
9 fnbr 6461 . . . . . . . . 9 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
108, 9mpan 688 . . . . . . . 8 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
1110rexlimivw 3284 . . . . . . 7 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
124, 5, 113syl 18 . . . . . 6 (𝜑𝐹 ∈ dom ⇝𝑣 )
13 ffun 6519 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
14 funfvbrb 6823 . . . . . . 7 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
156, 13, 14mp2b 10 . . . . . 6 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
1612, 15sylib 220 . . . . 5 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
17 eqid 2823 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
18 eqid 2823 . . . . . . . . 9 (norm ∘ − ) = (norm ∘ − )
1917, 18hhims 28951 . . . . . . . 8 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
20 eqid 2823 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2117, 19, 20hhlm 28978 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
22 resss 5880 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2321, 22eqsstri 4003 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2423ssbri 5113 . . . . 5 (𝐹𝑣 ( ⇝𝑣𝐹) → 𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2516, 24syl 17 . . . 4 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2618hilxmet 28974 . . . . . 6 (norm ∘ − ) ∈ (∞Met‘ ℋ)
2720mopntopon 23051 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2826, 27mp1i 13 . . . . 5 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2928cnmptid 22271 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝑥) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
30 occl.1 . . . . . . 7 (𝜑𝐴 ⊆ ℋ)
31 occl.4 . . . . . . 7 (𝜑𝐵𝐴)
3230, 31sseldd 3970 . . . . . 6 (𝜑𝐵 ∈ ℋ)
3328, 28, 32cnmptc 22272 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝐵) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3417hhnv 28944 . . . . . 6 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3517hhip 28956 . . . . . . 7 ·ih = (·𝑖OLD‘⟨⟨ + , · ⟩, norm⟩)
3635, 19, 20, 1dipcn 28499 . . . . . 6 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3734, 36mp1i 13 . . . . 5 (𝜑·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3828, 29, 33, 37cnmpt12f 22276 . . . 4 (𝜑 → (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
3925, 38lmcn 21915 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)(⇝𝑡‘(TopOpen‘ℂfld))((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)))
40 occl.3 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
4140ffvelrnda 6853 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (⊥‘𝐴))
42 ocel 29060 . . . . . . . . . . . 12 (𝐴 ⊆ ℋ → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4330, 42syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4443adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4541, 44mpbid 234 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0))
4645simpld 497 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℋ)
47 oveq1 7165 . . . . . . . . 9 (𝑥 = (𝐹𝑘) → (𝑥 ·ih 𝐵) = ((𝐹𝑘) ·ih 𝐵))
48 eqid 2823 . . . . . . . . 9 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))
49 ovex 7191 . . . . . . . . 9 ((𝐹𝑘) ·ih 𝐵) ∈ V
5047, 48, 49fvmpt 6770 . . . . . . . 8 ((𝐹𝑘) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5146, 50syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
52 oveq2 7166 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐹𝑘) ·ih 𝑥) = ((𝐹𝑘) ·ih 𝐵))
5352eqeq1d 2825 . . . . . . . 8 (𝑥 = 𝐵 → (((𝐹𝑘) ·ih 𝑥) = 0 ↔ ((𝐹𝑘) ·ih 𝐵) = 0))
5445simprd 498 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)
5531adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵𝐴)
5653, 54, 55rspcdva 3627 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ·ih 𝐵) = 0)
5751, 56eqtrd 2858 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = 0)
58 ocss 29064 . . . . . . . . 9 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
5930, 58syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
6040, 59fssd 6530 . . . . . . 7 (𝜑𝐹:ℕ⟶ ℋ)
61 fvco3 6762 . . . . . . 7 ((𝐹:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
6260, 61sylan 582 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
63 c0ex 10637 . . . . . . . 8 0 ∈ V
6463fvconst2 6968 . . . . . . 7 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
6564adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
6657, 62, 653eqtr4d 2868 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
6766ralrimiva 3184 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
68 ovex 7191 . . . . . . 7 (𝑥 ·ih 𝐵) ∈ V
6968, 48fnmpti 6493 . . . . . 6 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ
70 fnfco 6545 . . . . . 6 (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ ∧ 𝐹:ℕ⟶ ℋ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7169, 60, 70sylancr 589 . . . . 5 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7263fconst 6567 . . . . . 6 (ℕ × {0}):ℕ⟶{0}
73 ffn 6516 . . . . . 6 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
7472, 73ax-mp 5 . . . . 5 (ℕ × {0}) Fn ℕ
75 eqfnfv 6804 . . . . 5 ((((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7671, 74, 75sylancl 588 . . . 4 (𝜑 → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7767, 76mpbird 259 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}))
78 fvex 6685 . . . . 5 ( ⇝𝑣𝐹) ∈ V
7978hlimveci 28969 . . . 4 (𝐹𝑣 ( ⇝𝑣𝐹) → ( ⇝𝑣𝐹) ∈ ℋ)
80 oveq1 7165 . . . . 5 (𝑥 = ( ⇝𝑣𝐹) → (𝑥 ·ih 𝐵) = (( ⇝𝑣𝐹) ·ih 𝐵))
81 ovex 7191 . . . . 5 (( ⇝𝑣𝐹) ·ih 𝐵) ∈ V
8280, 48, 81fvmpt 6770 . . . 4 (( ⇝𝑣𝐹) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8316, 79, 823syl 18 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8439, 77, 833brtr3d 5099 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))(( ⇝𝑣𝐹) ·ih 𝐵))
851cnfldtopon 23393 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8685a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
87 0cnd 10636 . . 3 (𝜑 → 0 ∈ ℂ)
88 1zzd 12016 . . 3 (𝜑 → 1 ∈ ℤ)
89 nnuz 12284 . . . 4 ℕ = (ℤ‘1)
9089lmconst 21871 . . 3 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
9186, 87, 88, 90syl3anc 1367 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
923, 84, 91lmmo 21990 1 (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  {csn 4569  cop 4575   class class class wbr 5068  cmpt 5148   × cxp 5555  dom cdm 5557  cres 5559  ccom 5561  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  cc 10537  0cc0 10539  1c1 10540  cn 11640  cz 11984  TopOpenctopn 16697  ∞Metcxmet 20532  MetOpencmopn 20537  fldccnfld 20547  TopOnctopon 21520   Cn ccn 21834  𝑡clm 21836  Hauscha 21918   ×t ctx 22170  NrmCVeccnv 28363  chba 28698   + cva 28699   · csm 28700   ·ih csp 28701  normcno 28702   cmv 28704  Cauchyccauold 28705  𝑣 chli 28706  cort 28709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864  ax-hcompl 28981
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cn 21837  df-cnp 21838  df-lm 21839  df-haus 21925  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-dip 28480  df-hnorm 28747  df-hvsub 28750  df-hlim 28751  df-sh 28986  df-oc 29031
This theorem is referenced by:  occl  29083
  Copyright terms: Public domain W3C validator