HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occllem Structured version   Visualization version   GIF version

Theorem occllem 28029
Description: Lemma for occl 28030. (Contributed by NM, 7-Aug-2000.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
occl.1 (𝜑𝐴 ⊆ ℋ)
occl.2 (𝜑𝐹 ∈ Cauchy)
occl.3 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
occl.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
occllem (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)

Proof of Theorem occllem
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldhaus 22507 . . 3 (TopOpen‘ℂfld) ∈ Haus
32a1i 11 . 2 (𝜑 → (TopOpen‘ℂfld) ∈ Haus)
4 occl.2 . . . . . . 7 (𝜑𝐹 ∈ Cauchy)
5 ax-hcompl 27926 . . . . . . 7 (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
6 hlimf 27961 . . . . . . . . . 10 𝑣 :dom ⇝𝑣 ⟶ ℋ
7 ffn 6007 . . . . . . . . . 10 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → ⇝𝑣 Fn dom ⇝𝑣 )
86, 7ax-mp 5 . . . . . . . . 9 𝑣 Fn dom ⇝𝑣
9 fnbr 5956 . . . . . . . . 9 (( ⇝𝑣 Fn dom ⇝𝑣𝐹𝑣 𝑥) → 𝐹 ∈ dom ⇝𝑣 )
108, 9mpan 705 . . . . . . . 8 (𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
1110rexlimivw 3023 . . . . . . 7 (∃𝑥 ∈ ℋ 𝐹𝑣 𝑥𝐹 ∈ dom ⇝𝑣 )
124, 5, 113syl 18 . . . . . 6 (𝜑𝐹 ∈ dom ⇝𝑣 )
13 ffun 6010 . . . . . . 7 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 )
14 funfvbrb 6291 . . . . . . 7 (Fun ⇝𝑣 → (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹)))
156, 13, 14mp2b 10 . . . . . 6 (𝐹 ∈ dom ⇝𝑣𝐹𝑣 ( ⇝𝑣𝐹))
1612, 15sylib 208 . . . . 5 (𝜑𝐹𝑣 ( ⇝𝑣𝐹))
17 eqid 2621 . . . . . . . 8 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
18 eqid 2621 . . . . . . . . 9 (norm ∘ − ) = (norm ∘ − )
1917, 18hhims 27896 . . . . . . . 8 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
20 eqid 2621 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
2117, 19, 20hhlm 27923 . . . . . . 7 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
22 resss 5386 . . . . . . 7 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2321, 22eqsstri 3619 . . . . . 6 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
2423ssbri 4662 . . . . 5 (𝐹𝑣 ( ⇝𝑣𝐹) → 𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2516, 24syl 17 . . . 4 (𝜑𝐹(⇝𝑡‘(MetOpen‘(norm ∘ − )))( ⇝𝑣𝐹))
2618hilxmet 27919 . . . . . 6 (norm ∘ − ) ∈ (∞Met‘ ℋ)
2720mopntopon 22163 . . . . . 6 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2826, 27mp1i 13 . . . . 5 (𝜑 → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
2928cnmptid 21383 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝑥) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
30 occl.1 . . . . . . 7 (𝜑𝐴 ⊆ ℋ)
31 occl.4 . . . . . . 7 (𝜑𝐵𝐴)
3230, 31sseldd 3588 . . . . . 6 (𝜑𝐵 ∈ ℋ)
3328, 28, 32cnmptc 21384 . . . . 5 (𝜑 → (𝑥 ∈ ℋ ↦ 𝐵) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3417hhnv 27889 . . . . . 6 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3517hhip 27901 . . . . . . 7 ·ih = (·𝑖OLD‘⟨⟨ + , · ⟩, norm⟩)
3635, 19, 20, 1dipcn 27442 . . . . . 6 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3734, 36mp1i 13 . . . . 5 (𝜑·ih ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (TopOpen‘ℂfld)))
3828, 29, 33, 37cnmpt12f 21388 . . . 4 (𝜑 → (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
3925, 38lmcn 21028 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)(⇝𝑡‘(TopOpen‘ℂfld))((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)))
40 occl.3 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(⊥‘𝐴))
4140ffvelrnda 6320 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (⊥‘𝐴))
42 ocel 28007 . . . . . . . . . . . 12 (𝐴 ⊆ ℋ → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4330, 42syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4443adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ (⊥‘𝐴) ↔ ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)))
4541, 44mpbid 222 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ ℋ ∧ ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0))
4645simpld 475 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℋ)
47 oveq1 6617 . . . . . . . . 9 (𝑥 = (𝐹𝑘) → (𝑥 ·ih 𝐵) = ((𝐹𝑘) ·ih 𝐵))
48 eqid 2621 . . . . . . . . 9 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))
49 ovex 6638 . . . . . . . . 9 ((𝐹𝑘) ·ih 𝐵) ∈ V
5047, 48, 49fvmpt 6244 . . . . . . . 8 ((𝐹𝑘) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5146, 50syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = ((𝐹𝑘) ·ih 𝐵))
5231adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐵𝐴)
5345simprd 479 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0)
54 oveq2 6618 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐹𝑘) ·ih 𝑥) = ((𝐹𝑘) ·ih 𝐵))
5554eqeq1d 2623 . . . . . . . . 9 (𝑥 = 𝐵 → (((𝐹𝑘) ·ih 𝑥) = 0 ↔ ((𝐹𝑘) ·ih 𝐵) = 0))
5655rspcv 3294 . . . . . . . 8 (𝐵𝐴 → (∀𝑥𝐴 ((𝐹𝑘) ·ih 𝑥) = 0 → ((𝐹𝑘) ·ih 𝐵) = 0))
5752, 53, 56sylc 65 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ·ih 𝐵) = 0)
5851, 57eqtrd 2655 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)) = 0)
59 ocss 28011 . . . . . . . . 9 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
6030, 59syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ⊆ ℋ)
6140, 60fssd 6019 . . . . . . 7 (𝜑𝐹:ℕ⟶ ℋ)
62 fvco3 6237 . . . . . . 7 ((𝐹:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
6361, 62sylan 488 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘(𝐹𝑘)))
64 c0ex 9985 . . . . . . . 8 0 ∈ V
6564fvconst2 6429 . . . . . . 7 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
6665adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
6758, 63, 663eqtr4d 2665 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
6867ralrimiva 2961 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘))
69 ovex 6638 . . . . . . 7 (𝑥 ·ih 𝐵) ∈ V
7069, 48fnmpti 5984 . . . . . 6 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ
71 fnfco 6031 . . . . . 6 (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) Fn ℋ ∧ 𝐹:ℕ⟶ ℋ) → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7270, 61, 71sylancr 694 . . . . 5 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ)
7364fconst 6053 . . . . . 6 (ℕ × {0}):ℕ⟶{0}
74 ffn 6007 . . . . . 6 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
7573, 74ax-mp 5 . . . . 5 (ℕ × {0}) Fn ℕ
76 eqfnfv 6272 . . . . 5 ((((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7772, 75, 76sylancl 693 . . . 4 (𝜑 → (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹)‘𝑘) = ((ℕ × {0})‘𝑘)))
7868, 77mpbird 247 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵)) ∘ 𝐹) = (ℕ × {0}))
79 fvex 6163 . . . . 5 ( ⇝𝑣𝐹) ∈ V
8079hlimveci 27914 . . . 4 (𝐹𝑣 ( ⇝𝑣𝐹) → ( ⇝𝑣𝐹) ∈ ℋ)
81 oveq1 6617 . . . . 5 (𝑥 = ( ⇝𝑣𝐹) → (𝑥 ·ih 𝐵) = (( ⇝𝑣𝐹) ·ih 𝐵))
82 ovex 6638 . . . . 5 (( ⇝𝑣𝐹) ·ih 𝐵) ∈ V
8381, 48, 82fvmpt 6244 . . . 4 (( ⇝𝑣𝐹) ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8416, 80, 833syl 18 . . 3 (𝜑 → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐵))‘( ⇝𝑣𝐹)) = (( ⇝𝑣𝐹) ·ih 𝐵))
8539, 78, 843brtr3d 4649 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))(( ⇝𝑣𝐹) ·ih 𝐵))
861cnfldtopon 22505 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8786a1i 11 . . 3 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
88 0cnd 9984 . . 3 (𝜑 → 0 ∈ ℂ)
89 1zzd 11359 . . 3 (𝜑 → 1 ∈ ℤ)
90 nnuz 11674 . . . 4 ℕ = (ℤ‘1)
9190lmconst 20984 . . 3 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
9287, 88, 89, 91syl3anc 1323 . 2 (𝜑 → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
933, 85, 92lmmo 21103 1 (𝜑 → (( ⇝𝑣𝐹) ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  wss 3559  {csn 4153  cop 4159   class class class wbr 4618  cmpt 4678   × cxp 5077  dom cdm 5079  cres 5081  ccom 5083  Fun wfun 5846   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  cc 9885  0cc0 9887  1c1 9888  cn 10971  cz 11328  TopOpenctopn 16010  ∞Metcxmt 19659  MetOpencmopn 19664  fldccnfld 19674  TopOnctopon 20643   Cn ccn 20947  𝑡clm 20949  Hauscha 21031   ×t ctx 21282  NrmCVeccnv 27306  chil 27643   + cva 27644   · csm 27645   ·ih csp 27646  normcno 27647   cmv 27649  Cauchyccau 27650  𝑣 chli 27651  cort 27654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967  ax-hilex 27723  ax-hfvadd 27724  ax-hvcom 27725  ax-hvass 27726  ax-hv0cl 27727  ax-hvaddid 27728  ax-hfvmul 27729  ax-hvmulid 27730  ax-hvmulass 27731  ax-hvdistr1 27732  ax-hvdistr2 27733  ax-hvmul0 27734  ax-hfi 27803  ax-his1 27806  ax-his2 27807  ax-his3 27808  ax-his4 27809  ax-hcompl 27926
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-icc 12131  df-fz 12276  df-fzo 12414  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cn 20950  df-cnp 20951  df-lm 20952  df-haus 21038  df-tx 21284  df-hmeo 21477  df-xms 22044  df-ms 22045  df-tms 22046  df-grpo 27214  df-gid 27215  df-ginv 27216  df-gdiv 27217  df-ablo 27266  df-vc 27281  df-nv 27314  df-va 27317  df-ba 27318  df-sm 27319  df-0v 27320  df-vs 27321  df-nmcv 27322  df-ims 27323  df-dip 27423  df-hnorm 27692  df-hvsub 27695  df-hlim 27696  df-sh 27931  df-oc 27976
This theorem is referenced by:  occl  28030
  Copyright terms: Public domain W3C validator