HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occon Structured version   Visualization version   GIF version

Theorem occon 29058
Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
occon ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴)))

Proof of Theorem occon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4032 . . . . . 6 (𝐴𝐵 → (∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0))
21ralrimivw 3183 . . . . 5 (𝐴𝐵 → ∀𝑥 ∈ ℋ (∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0))
3 ss2rab 4046 . . . . 5 ({𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0} ↔ ∀𝑥 ∈ ℋ (∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0 → ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0))
42, 3sylibr 236 . . . 4 (𝐴𝐵 → {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
54adantl 484 . . 3 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0} ⊆ {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
6 ocval 29051 . . . 4 (𝐵 ⊆ ℋ → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0})
76ad2antlr 725 . . 3 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → (⊥‘𝐵) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐵 (𝑥 ·ih 𝑦) = 0})
8 ocval 29051 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
98ad2antrr 724 . . 3 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → (⊥‘𝐴) = {𝑥 ∈ ℋ ∣ ∀𝑦𝐴 (𝑥 ·ih 𝑦) = 0})
105, 7, 93sstr4d 4013 . 2 (((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) ∧ 𝐴𝐵) → (⊥‘𝐵) ⊆ (⊥‘𝐴))
1110ex 415 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wral 3138  {crab 3142  wss 3935  cfv 6349  (class class class)co 7150  0cc0 10531  chba 28690   ·ih csp 28693  cort 28701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-hilex 28770
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-oc 29023
This theorem is referenced by:  occon2  29059  occon3  29068  ococin  29179  ssjo  29218  chsscon3i  29232  shjshsi  29263
  Copyright terms: Public domain W3C validator