HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occon2 Structured version   Visualization version   GIF version

Theorem occon2 27993
Description: Double contraposition for orthogonal complement. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.)
Assertion
Ref Expression
occon2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))))

Proof of Theorem occon2
StepHypRef Expression
1 ocss 27990 . . 3 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
2 ocss 27990 . . 3 (𝐵 ⊆ ℋ → (⊥‘𝐵) ⊆ ℋ)
31, 2anim12ci 590 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → ((⊥‘𝐵) ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ))
4 occon 27992 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘𝐵) ⊆ (⊥‘𝐴)))
5 occon 27992 . 2 (((⊥‘𝐵) ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → ((⊥‘𝐵) ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))))
63, 4, 5sylsyld 61 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴𝐵 → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘(⊥‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wss 3555  cfv 5847  chil 27622  cort 27633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-hilex 27702  ax-hfvadd 27703  ax-hv0cl 27706  ax-hfvmul 27708  ax-hvmul0 27713  ax-hfi 27782  ax-his2 27786  ax-his3 27787
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-ltxr 10023  df-sh 27910  df-oc 27955
This theorem is referenced by:  occon2i  27994  hsupss  28046  shlej1  28065  shlub  28119
  Copyright terms: Public domain W3C validator