HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ococ Structured version   Visualization version   GIF version

Theorem ococ 27442
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ococ (𝐴C → (⊥‘(⊥‘𝐴)) = 𝐴)

Proof of Theorem ococ
StepHypRef Expression
1 fveq2 6087 . . . 4 (𝐴 = if(𝐴C , 𝐴, ℋ) → (⊥‘𝐴) = (⊥‘if(𝐴C , 𝐴, ℋ)))
21fveq2d 6091 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → (⊥‘(⊥‘𝐴)) = (⊥‘(⊥‘if(𝐴C , 𝐴, ℋ))))
3 id 22 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → 𝐴 = if(𝐴C , 𝐴, ℋ))
42, 3eqeq12d 2624 . 2 (𝐴 = if(𝐴C , 𝐴, ℋ) → ((⊥‘(⊥‘𝐴)) = 𝐴 ↔ (⊥‘(⊥‘if(𝐴C , 𝐴, ℋ))) = if(𝐴C , 𝐴, ℋ)))
5 ifchhv 27278 . . 3 if(𝐴C , 𝐴, ℋ) ∈ C
65ococi 27441 . 2 (⊥‘(⊥‘if(𝐴C , 𝐴, ℋ))) = if(𝐴C , 𝐴, ℋ)
74, 6dedth 4088 1 (𝐴C → (⊥‘(⊥‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  ifcif 4035  cfv 5789  chil 26953   C cch 26963  cort 26964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872  ax-hilex 27033  ax-hfvadd 27034  ax-hvcom 27035  ax-hvass 27036  ax-hv0cl 27037  ax-hvaddid 27038  ax-hfvmul 27039  ax-hvmulid 27040  ax-hvmulass 27041  ax-hvdistr1 27042  ax-hvdistr2 27043  ax-hvmul0 27044  ax-hfi 27113  ax-his1 27116  ax-his2 27117  ax-his3 27118  ax-his4 27119  ax-hcompl 27236
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-n0 11142  df-z 11213  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ico 12010  df-icc 12011  df-fz 12155  df-fl 12412  df-seq 12621  df-exp 12680  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-clim 14015  df-rlim 14016  df-rest 15854  df-topgen 15875  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-fbas 19512  df-fg 19513  df-top 20468  df-bases 20469  df-topon 20470  df-cld 20580  df-ntr 20581  df-cls 20582  df-nei 20659  df-lm 20790  df-haus 20876  df-fil 21407  df-fm 21499  df-flim 21500  df-flf 21501  df-cfil 22805  df-cau 22806  df-cmet 22807  df-grpo 26524  df-gid 26525  df-ginv 26526  df-gdiv 26527  df-ablo 26576  df-vc 26591  df-nv 26624  df-va 26627  df-ba 26628  df-sm 26629  df-0v 26630  df-vs 26631  df-nmcv 26632  df-ims 26633  df-ssp 26754  df-ph 26845  df-cbn 26896  df-hnorm 27002  df-hba 27003  df-hvsub 27005  df-hlim 27006  df-hcau 27007  df-sh 27241  df-ch 27255  df-oc 27286  df-ch0 27287
This theorem is referenced by:  dfch2  27443  ococin  27444  shlub  27450  pjhtheu2  27452  shjshseli  27529  chsscon1  27537  chpsscon1  27540  chpsscon2  27541  chdmm2  27562  chdmm3  27563  chdmm4  27564  chdmj1  27565  chdmj2  27566  chdmj3  27567  chdmj4  27568  fh2  27655  hstle  28266  hstoh  28268  mddmd  28337
  Copyright terms: Public domain W3C validator