HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ococ Structured version   Visualization version   GIF version

Theorem ococ 29186
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ococ (𝐴C → (⊥‘(⊥‘𝐴)) = 𝐴)

Proof of Theorem ococ
StepHypRef Expression
1 2fveq3 6678 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → (⊥‘(⊥‘𝐴)) = (⊥‘(⊥‘if(𝐴C , 𝐴, ℋ))))
2 id 22 . . 3 (𝐴 = if(𝐴C , 𝐴, ℋ) → 𝐴 = if(𝐴C , 𝐴, ℋ))
31, 2eqeq12d 2840 . 2 (𝐴 = if(𝐴C , 𝐴, ℋ) → ((⊥‘(⊥‘𝐴)) = 𝐴 ↔ (⊥‘(⊥‘if(𝐴C , 𝐴, ℋ))) = if(𝐴C , 𝐴, ℋ)))
4 ifchhv 29024 . . 3 if(𝐴C , 𝐴, ℋ) ∈ C
54ococi 29185 . 2 (⊥‘(⊥‘if(𝐴C , 𝐴, ℋ))) = if(𝐴C , 𝐴, ℋ)
63, 5dedth 4526 1 (𝐴C → (⊥‘(⊥‘𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  ifcif 4470  cfv 6358  chba 28699   C cch 28709  cort 28710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620  ax-hilex 28779  ax-hfvadd 28780  ax-hvcom 28781  ax-hvass 28782  ax-hv0cl 28783  ax-hvaddid 28784  ax-hfvmul 28785  ax-hvmulid 28786  ax-hvmulass 28787  ax-hvdistr1 28788  ax-hvdistr2 28789  ax-hvmul0 28790  ax-hfi 28859  ax-his1 28862  ax-his2 28863  ax-his3 28864  ax-his4 28865  ax-hcompl 28982
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-top 21505  df-topon 21522  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lm 21840  df-haus 21926  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-cfil 23861  df-cau 23862  df-cmet 23863  df-grpo 28273  df-gid 28274  df-ginv 28275  df-gdiv 28276  df-ablo 28325  df-vc 28339  df-nv 28372  df-va 28375  df-ba 28376  df-sm 28377  df-0v 28378  df-vs 28379  df-nmcv 28380  df-ims 28381  df-ssp 28502  df-ph 28593  df-cbn 28643  df-hnorm 28748  df-hba 28749  df-hvsub 28751  df-hlim 28752  df-hcau 28753  df-sh 28987  df-ch 29001  df-oc 29032  df-ch0 29033
This theorem is referenced by:  dfch2  29187  ococin  29188  shlub  29194  pjhtheu2  29196  shjshseli  29273  chsscon1  29281  chpsscon1  29284  chpsscon2  29285  chdmm2  29306  chdmm3  29307  chdmm4  29308  chdmj1  29309  chdmj2  29310  chdmj3  29311  chdmj4  29312  fh2  29399  hstle  30010  hstoh  30012  mddmd  30081
  Copyright terms: Public domain W3C validator