HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ococss Structured version   Visualization version   GIF version

Theorem ococss 28001
Description: Inclusion in complement of complement. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ococss (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))

Proof of Theorem ococss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3577 . . . 4 (𝐴 ⊆ ℋ → (𝑦𝐴𝑦 ∈ ℋ))
2 ocorth 27999 . . . . . 6 (𝐴 ⊆ ℋ → ((𝑦𝐴𝑥 ∈ (⊥‘𝐴)) → (𝑦 ·ih 𝑥) = 0))
32expd 452 . . . . 5 (𝐴 ⊆ ℋ → (𝑦𝐴 → (𝑥 ∈ (⊥‘𝐴) → (𝑦 ·ih 𝑥) = 0)))
43ralrimdv 2962 . . . 4 (𝐴 ⊆ ℋ → (𝑦𝐴 → ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0))
51, 4jcad 555 . . 3 (𝐴 ⊆ ℋ → (𝑦𝐴 → (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)))
6 ocss 27993 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
7 ocel 27989 . . . 4 ((⊥‘𝐴) ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)))
86, 7syl 17 . . 3 (𝐴 ⊆ ℋ → (𝑦 ∈ (⊥‘(⊥‘𝐴)) ↔ (𝑦 ∈ ℋ ∧ ∀𝑥 ∈ (⊥‘𝐴)(𝑦 ·ih 𝑥) = 0)))
95, 8sylibrd 249 . 2 (𝐴 ⊆ ℋ → (𝑦𝐴𝑦 ∈ (⊥‘(⊥‘𝐴))))
109ssrdv 3589 1 (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555  cfv 5847  (class class class)co 6604  0cc0 9880  chil 27625   ·ih csp 27628  cort 27636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-hilex 27705  ax-hfvadd 27706  ax-hv0cl 27709  ax-hfvmul 27711  ax-hvmul0 27716  ax-hfi 27785  ax-his1 27788  ax-his2 27789  ax-his3 27790
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-2 11023  df-cj 13773  df-re 13774  df-im 13775  df-sh 27913  df-oc 27958
This theorem is referenced by:  shococss  28002  occon3  28005  hsupunss  28051  spanssoc  28057  shunssji  28077  ococin  28116  sshhococi  28254  h1did  28259  spansnpji  28286  pjoccoi  28886
  Copyright terms: Public domain W3C validator