![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocvi | Structured version Visualization version GIF version |
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
ocvfval.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvfval.i | ⊢ , = (·𝑖‘𝑊) |
ocvfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ocvfval.z | ⊢ 0 = (0g‘𝐹) |
ocvfval.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocvi | ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | ocvfval.i | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | ocvfval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | ocvfval.z | . . . 4 ⊢ 0 = (0g‘𝐹) | |
5 | ocvfval.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
6 | 1, 2, 3, 4, 5 | elocv 20060 | . . 3 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) |
7 | 6 | simp3bi 1098 | . 2 ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) → ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ) |
8 | oveq2 6698 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 , 𝑥) = (𝐴 , 𝐵)) | |
9 | 8 | eqeq1d 2653 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 , 𝑥) = 0 ↔ (𝐴 , 𝐵) = 0 )) |
10 | 9 | rspccva 3339 | . 2 ⊢ ((∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
11 | 7, 10 | sylan 487 | 1 ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ⊆ wss 3607 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Scalarcsca 15991 ·𝑖cip 15993 0gc0g 16147 ocvcocv 20052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-ocv 20055 |
This theorem is referenced by: ocvocv 20063 ocvlss 20064 ocvin 20066 lsmcss 20084 clsocv 23095 |
Copyright terms: Public domain | W3C validator |