MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvocv Structured version   Visualization version   GIF version

Theorem ocvocv 19934
Description: A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvss.v 𝑉 = (Base‘𝑊)
ocvss.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvocv ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))

Proof of Theorem ocvocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ocvss.v . . . . . 6 𝑉 = (Base‘𝑊)
2 ocvss.o . . . . . 6 = (ocv‘𝑊)
31, 2ocvss 19933 . . . . 5 ( 𝑆) ⊆ 𝑉
43a1i 11 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ( 𝑆) ⊆ 𝑉)
5 simpr 477 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆𝑉)
65sselda 3583 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥𝑉)
7 eqid 2621 . . . . . . . . 9 (·𝑖𝑊) = (·𝑖𝑊)
8 eqid 2621 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
9 eqid 2621 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
101, 7, 8, 9, 2ocvi 19932 . . . . . . . 8 ((𝑦 ∈ ( 𝑆) ∧ 𝑥𝑆) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1110ancoms 469 . . . . . . 7 ((𝑥𝑆𝑦 ∈ ( 𝑆)) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
1211adantll 749 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → (𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)))
13 simplll 797 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑊 ∈ PreHil)
144sselda 3583 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑦𝑉)
156adantr 481 . . . . . . 7 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → 𝑥𝑉)
168, 7, 1, 9iporthcom 19899 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑦𝑉𝑥𝑉) → ((𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1713, 14, 15, 16syl3anc 1323 . . . . . 6 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → ((𝑦(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
1812, 17mpbid 222 . . . . 5 ((((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ 𝑦 ∈ ( 𝑆)) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
1918ralrimiva 2960 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ∀𝑦 ∈ ( 𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
201, 7, 8, 9, 2elocv 19931 . . . 4 (𝑥 ∈ ( ‘( 𝑆)) ↔ (( 𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ( 𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
214, 6, 19, 20syl3anbrc 1244 . . 3 (((𝑊 ∈ PreHil ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝑥 ∈ ( ‘( 𝑆)))
2221ex 450 . 2 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → (𝑥𝑆𝑥 ∈ ( ‘( 𝑆))))
2322ssrdv 3589 1 ((𝑊 ∈ PreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ( ‘( 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  Scalarcsca 15865  ·𝑖cip 15867  0gc0g 16021  PreHilcphl 19888  ocvcocv 19923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-ghm 17579  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-rnghom 18636  df-staf 18766  df-srng 18767  df-lmod 18786  df-lmhm 18941  df-lvec 19022  df-sra 19091  df-rgmod 19092  df-phl 19890  df-ocv 19926
This theorem is referenced by:  ocvsscon  19938  ocvlsp  19939  iscss2  19949  ocvcss  19950  mrccss  19957
  Copyright terms: Public domain W3C validator